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Abstract 

Elevated pathogen levels are the leading cause of water quality impairments in the 

waterways of the United States. Pathogens can enter waterways through combined sewage 

overflow, agricultural practices or wildlife. These pathogens survive in various phases but 

once attached to particles they can become persist in the sediment bed. Pathogens in the 

sediment bed can resuspended during high flows and when ingested cause gastroenteritis 

among children and immune compromised individuals. This research promotes the 

development of better methods to model bacterial pathways in the environment. The first 

goal of the study was to measure E. coli resuspension from various sediments over a range 

of flow rates. The second goal of the study was to calculate unattached and attached E. coli 

resuspension and compare calculated values to predicted resuspension rates.  

The experiments were conducted in a recirculating plexiglas flume 9.1 m in length. 

Three different bottom sediments were evaluated:  sand, sand-silt, and sand-silt overlain 

with biofilm. The water samples were collected at two locations downstream from the initial 

flume inlet. At each location, nine samples were collected in a grid pattern. For each bottom 

sediments there were multiple experiments at flows set by the critical shear stress. Two runs 

were selected below critical shear stress and one run above critical shear stress for each 

bottom sediments. A duplicate run under critical shear stress was completed for all three of 

the bottom sediments at a higher water depth. Various background and sediment samples 

were also collected to characterize the experiments and complete a mass balance on the E. 

coli concentrations. Once samples were taken at the flume, they were enumerated using 

standard membrane filtration techniques at the water quality research laboratory at Iowa 

State University. Composites of the nine points were compiled based on velocity analysis, 

and tested for total and unattached concentrations of E. coli, in order to obtain attached E. 

coli values. Using the two sample locations, resuspension was calculated for the attached 

and unattached fractions.  Using a SAS statistical package, correlations and comparisons 

were completed on the collected data. Predicted values obtained using a  sediment 

resuspension model (Lick 2009; Pandey et al. 2012) were compared to values calculated 

from the experimental data.  The model equations were then calibrated by using the 

calculated data.  
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Attachment ratios were assessed using filtration techniques by applying different 

pore size filters. During the experiments the attachment ratios increased as particle sizes in 

the bottom sediments size decreased. The percent of attached E. coli decreased after the 

critical shear stress was surpassed. The percent of attached E. coli was also impacted by 

depth of the water. Between the 15 cm and 23 cm depth the sand attachment decreased by 

66%, sand-silt increased by 34%, and biofilm decreased by 69% over the two sample 

collection locations.  There was a statistical difference between the sediment type and flow 

rate compared to the attachment found in the flume.  The calculated unattached E. coli 

resuspension rate was 1.32E-6 cfu/m
2
/s for sand, 1.03E-6 cfu/m

2
/s for sand-silt, and 1.78E-6 

cfu/m
2
/s for biofilm. The calculated attached E. coli resuspension rates were 3.84E-6 

cfu/m
2
/s for sand, -2.84E-6 cfu/m

2
/s for sand-silt, and -8.06E-6 cfu/m

2
/s for biofilm, where 

the negative values indicate deposition. Using the measured values and calculated values, 

the various parameters were input in the model. The statistical analysis of the regression 

found an r
2
 value of 0.85 for the unattached E. coli resuspension model in comparison to the 

calculated E. coli resuspension values. The statistical analysis of the regression found an r
2
 

value of 0.91 for the unattached E. coli resuspension model in comparison to the calculated 

E. coli resuspension values. The negative resuspension values indicate deposition and were 

not used to predict resuspension in the model. The resuspension was found to be low in 

comparison similar field studies by Pandey and Jamieson. The differences of the flume 

conditions and lower flow rates than in other resuspension studies could have caused the 

differences in calculated resuspension. 

There is a lack of knowledge and ability to track particles unattached pathogens in 

stream environments. It is possible to model attached E. coli resuspension with sediment 

equations based on the results of this study. The unattached fraction still needs further 

research to assess the risk of different resuspension parameters.  The flume could be used to 

study further sediments and higher flow rates to examine effects on resuspension. The 

equations developed should be tested in field experiments, to confer and further calibrate the 

model. Calibrated equations need to be tested in field environments to explore how turbulent 

flow may affect the resuspension of various bottom sediments.  
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Chapter 1 Introduction 

Water quality has become a global issue due to scarcity and increasing change in global 

weather patterns. Freshwater has especially been protected in the United States under the 

Clean Water Act (CWA), which is intended to maintain the integrity of the nation’s waters. 

The CWA requires a list to be made of the waters not meeting the specified limits on 

pollutants. Programs are developed to monitor and help reach concentration goals in order 

for  waters  to then be removed from the impaired wasters list (USEPA 2009). Pathogens are 

the leading violation of water quality standards (USEPA 2002) and can be particularly 

harmful to human health. Ingestion of these pathogens, through recreational contact, can 

cause gastroenteritis. Pathogen detection often indicates a compromised waterbody by fecal 

matter, as pathogens are found in the lower intestines of warm blooded animals. 

After the pathogens are released into the environment, there is a large amount of 

uncertainty of the microbial transport pathways. If pathogens reach a waterbody, there are 

various outcomes which can occur including deactivation, attachment and deposition. Once 

pathogens reach the sediment bottom, chances of survival increase as they are protected 

from predators and higher amounts of nutrients are available. These pathogens in sediments 

have been found to have higher deactivation times then pathogens in the water column 

which are freely suspended. Once the pathogens reach the sediment bed and survive, they 

can become a potential source of pathogens during high flow events. They can also be 

resuspended during any event which moves the sediment. Sediment disruptions include 

waves, and wind action as well as large weather patterns such as hurricanes (Fries et al. 

2006; Fries et al. 2008; Ge et al. 2010). A study of the effects of bottom sediments types and 

different flow rates below and above critical shear stress would assist in modeling the 

resuspension of pathogens in stream sediments. 

Models have a difficult time estimating bacteria resuspension due to the lack of research 

on the amount and properties which effect resuspension. Current models often ignore 

resuspension (Petersen et al. 2009) and can underestimate the amount of pathogens in the 

water columns. During drought periods, substantial  deposition of particles, and therefore E. 

coli,  can occur  due to lower flow rates; however if the period of drought is followed by a 



www.manaraa.com

2 

 

 

period of higher flow, pathogen and sediments loads  in the stream can resuspend. Other 

models estimate resuspension linearly or based on partitioning coefficients (Russo et al. 

2011). Attachment has been correlated to various factors; however resuspension has yet to 

be fully understood. Models of sediment resuspension have been established, yet no models 

of pathogens in attached and unattached phases have been modeled in a flume using 

sediment resuspension equations. Using previous sediment resuspension equations the 

attached and unattached movement was investigated. 

Goals & Objectives 

The main goal of this study was to improve understanding of how different bottom 

sediments and flows impact in-stream bacterial attachment fractions and resuspension by: 

 Measuring the attachment ratio over three different bottom sediments (sand, sand-

silt, and sand-silt overlain with biofilm), three flows, and two water depths 

 Calculating the attached and unattached resuspension 

The second goal of this study was calibrate a sediment model using the calculated 

unattached and attached resuspension measured in the flume by: 

 Modifying sediment resuspension equations to model the bacteria resuspension 

process 

 Calibrating the model using the calculated resuspension and compare to model 

Hypothesis 

During the preparation for this study various hypotheses for expected outcomes were 

identified. 

 The increased shear stress will increase bacterial attachment 

 The sediment types will significantly affect the resuspension and attachment of the 

particles 

 Attachment will be higher among biofilm bottom sediments 

 The resuspension rate of attached E. coli will be proportional to the resuspension rate 

of sediment 
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 The two depth comparisons will result in lower resuspension for the higher depth and 

different attachment ratios 

 There will also be higher resuspension with higher flow rates 

 Resuspension of unattached E. coli will occur at lower shear stresses than for 

attached E. coli 

Thesis Organization 

The goal of this study was to measure resuspension of E. coli in various flows and 

bottom sediments. Chapter 2 consists of a literature review research concerned with 

movement of microbes and current models of resuspension. Chapter 3 is a paper to be 

submitted to a peer reviewed journal. Chapter 3 presents a detailed looked at the measured 

resuspension achieved in the flume and comparison of resuspension values. Chapter 4 is a 

conclusion chapter including implications and future work which could extend the 

knowledge in further research. 
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Chapter 2 Literature Review 

Water Quality-Pathogen Impairments  

Access to clean water is often listed as one of the essential human rights. The United 

Nations (UN) calls for decrease in population without sustainable access to safe drinking 

water (Scachs 2005) under the UN millennium goal number seven.  Access to drinking 

water is being added as a constitutional right in certain countries, such as South Africa, 

Kenya, Sambia, Colombia, Uruguay, and India (Hildering 2004; Riedel 2006). The scarcity 

of fresh and clean water has become more prominent with the increase in population and 

changes in global weather patterns. This sacristy leads to more contaminated water due to 

improper management. An estimated 120 million cases of gastrointestinal illness (GI) are 

caused by bathing in coastal waters polluted with fecal matter (Shuval 2003). Various 

studies have proven that fecal contamination leads to illnesses among swimmers (Marion et 

al. 2010; Sinigalliano et al. 2010; Wade et al. 2010). The issue is not limited to bathing and 

swimming, recreation interactions also are an issue. Water ingestion has been shown to be 

3.5-4 mL of water during limited recreation activities in comparison to 10 mL which are 

observed during swimming (Dorevitch et al. 2011).  The fresh waters currently available are 

becoming scarcer and should be protected from fecal contamination. Fecal contamination 

causes a majority of the gastrointestinal illness in children, elderly and 

immunocompromised. Lack of access to clean drinking water is the number one cause of 

infant mortality throughout the world. 

Waterborne pathogens are attributed to fecal deposition. Pathogens include total 

coliforms, fecal coliforms, E. coli, and enterococci. Pathogens, such as E. coli, are found in 

the intestines of warm blooded animals. Detection of pathogen indicates contact with fecal 

matter in the water source.  The most studied pathogen, E. coli, has been best correlated with 

freshwater system health effects and Enteroccoccus has been correlated with marine system 

health effects (Halliday and Gast 2011). Due to concerns of water quality, detection of fecal 

contamination is important for both recreation and source water usage.  

E. coli is used as a major indicator organism due to its high correlation with fecal 

matter and easily culturable (Dufour 1984). The negative side effect of using fecal coliform 
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(FC) membrane filtration is the incubation for 24 hours for full cultures to be produced. The 

cultures are measured by colony forming units (cfu) per one hundred milliliters of water. 

There are quicker methods of fecal detection such as real time Polymerase Chain Reaction 

(qPCR).  These methods are more expensive and require highly trained staff; therefore they 

have not become as widespread as membrane filtration. Standard methods of detection have 

not changed to match the growing demand of real-time data. 

The data collected on E. coli concentrations is often required by and reported to the 

U.S. Environmental Protection Agency (EPA). The EPA, through the Clean Water Act 

requires states to develop an impaired waters list based on various criteria. Fresh waters can 

become impaired through a number of ways including, salinity, pesticides, sedimentation, or 

xenobiotics released through human interaction. Impaired, according to the EPA, is any 

waterbody with a chronic or reoccurring violation of standard water quality criteria (USEPA 

2011).  The impaired waters list details the impaired waters of each state and identifies the 

impairments the waterway. After a waterbody is added to the list, the EPA sets goals 

through the Total Maximum Daily Load (TMDL) program (USEPA 2009). This requires 

states to test, record and report on water quality for each impaired water body. Pathogens 

impairments are the number one cause of impairment (USEPA 2010) for all United States 

waterways. It’s estimated that 20,000 waterway are currently impaired due to pathogens and 

the cost of implementing the practice of TMDL program is 1 to 3.4 billion dollars annually 

(USEPA 2002).  

The TMDL program assist in setting limits on the load of pollutants that can be 

added from various point and nonpoint sources into waterways. A point source is a load that 

is discharge from a specific location whereas non-point sources are released from multiple 

sources in a larger area (USEPA 2011).  Many states classify waters as impaired due to 

pathogens and set TMDLs based on concentrations of the main fecal indicator, E. coli  

(USEPA 2000). Most of the bacterial load has been found to derive from nonpoint sources 

such as wildlife, agriculture, and leaky septic tanks (Ge et al. 2010). After bacteria enter the 

waterbody from various point and nonpoint sources, they may attach, settle, persist, grow, 

and resuspend in the sediments of waterways. It has been found that bacteria in sediments 

act as a source of bacteria during high flow events, where bacteria are resuspended from 
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bottom sediments into the water column. The resuspension will also depend on a number of 

factors including the type of bottom sediments in the waterways and flow rates. Currently 

the TMDL’s do not include resuspension of sediments and attached microorganisms, which 

may cause a higher concentration of E. coli in the water column.  

Microbial Sources   

Pathogens are found in the intestines of warm blooded animals. The detection of 

pathogens leads to the conclusion that fecal matter has been in contact with a water source. 

Pathogens include total coliforms, fecal coliforms, E. coli, and enterococci.  E. coli has 

historically been used as an indicator organism due to the ease of culturablity and low costs 

of processing.  

Microbial pathogens in the water environment come from assorted sources. There 

are also various risks with each pathogenic source; humans are more susceptible to human 

pathogens. Soller (2010) investigated other sources of pathogens and found a risk associated 

with exposure by gull, chicken, or pigs are lower than human source risk. Sources of 

pathogens are a derived by a mixture of point and nonpoint sources. Examples of nonpoint 

sources include tile drainage, runoff from agricultural lands, runoff from confined feeding 

operations, infrastructure leaks, and wildlife contributions. Examples of point sources are 

categorized as runoff waste water treatment plant effluent and combined sewer overflow. 

Due to the nature of nonpoint source pathogenic releases are difficult to enumerate.  

Cattle have been shown to be a source of nonpoint pathogens for streams. Sinclair 

(2009) was able to show that higher amounts of bacteria were found in rural basins with 

cattle than urban basins. Muirhead found that cow crossings were a statistically significant 

source of E. coli  contamination (Muirhead et al. 2005) and the unattached cells can become 

highly mobile. The cells for the study were mixed including cowpats and cowpats mixed 

with soils. The concentrations of E. coli in the water due to runoff was 4-6 log/g of dry 

weight, whereas the concentration off of cowpats were 5-8 log/g of dry weight. Hotspots, 

cow crossings, can affect the concentrations downstream without much dispersion (Cho et 

al. 2010). With this type of nonpoint source, Collins was able to investigate the riparian 

buffer strips improvement of water quality near cattle crossings (Collins and Rutherford 
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2004). When looking at contaminates form a recreational standpoint the same risk is 

attributed to cattle feces than the human fecal coliforms (Soller et al. 2010). Cattle, however, 

are not the sole source of pathogenic concentrations in streams (Harmel et al. 2010).  There 

have been other studies looking at the sources of fecal contamination, including wildlife as a 

major component (Kim et al. 2010). Deposition of wildlife fecal material has also been a 

major issue while modeling resuspension and loads (Kim et al. 2010).There have been 

measurable amounts of E. coli found in groundwater around sewage pipes due to leaks. 

Other studies are looking at various transport behaviors once pathogens infiltrated in the 

stream. Artificial floods caused by gate opening and of Nalidixic Acid Resistant (NAR) 

tracer bacteria, completed by Nagles, suggested removing livestock from stream channels to 

stop direct deposit (Nagels et al. 2002). Nagels showed the direct deposits were also 

responsible for the mobilization of fine grained sediment and bacteria which were well 

correlated.  Sources in agricultural area fecal indicator bacteria and intestinal enterococci 

were measured and the values ranged between 1.4 x10
3
 and 4.0 x 10

5 
E. coli/100mL and 

sediment concentrations to range between 2.1 x10
2
 and 3.3 x 10

5
 E. coli /100mL. However, 

agriculture is no solely responsible for the numbers of pathogens found in streams, as point 

sources also contribute to concentrations.  

Point source contributions come from industrial outfalls, wastewater treatment plants 

and combined sewage overflows. Wastewater treatment plants also provide a literal pipeline 

of microbial source. Outtara showed point sources are predominating in this stream system 

source of pathogens (Ouattara et al. 2011). Currently no regulations are placed on the 

effluent concentrations of pathogens at wastewater treatment plants. The EPA, however, is 

looking into programs which would limit the amount of pathogens released into the 

environment. Many cities, especially older cities, still have combined sewage overflow 

(CSO). Cities such as these release large amounts of untreated waste which cause large 

amounts of nutrients and pathogens to be released in a relatively short amount of time 

(Passerat et al. 2011). Passerat (2011) studied a case of CSO  release in a outfall of Paris, 

France in the summer of 2008. This study measured the E. coli concentration to be 1.5x10
6
 

E. coli/100 mL during the overflow. Releasing pathogens to the environment causes 

unnaturally high concentrations to be found in the areas around the outfalls.  
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Pathogens can move through various routes once in the environment. Microbes can 

remain attached to particles and runoff with rain events. Microbes can also be removed from 

source matter and travel unattached during runoff events. Rainfall events usually trigger the 

introduction of pathogens into streams, although direct deposit can also contribute to water 

quality degradation.  

Microbial Transport in Surface Waters  

Microbial transport has captured scientist’s attention due to its increased importance 

in water quality. Government agencies and modelers have come to the realization that in 

order to understand environmental transport of pollutants, interdisciplinary knowledge is 

necessary including various disciplines such as fluids, chemistry and microbiology. 

Researchers must work to understand the movement and transportation of microbe 

environment by looking at attachment, settling, survival rates and resuspension.  

The various point and non-point sources often lead to elevated levels of E. coli 

concentrations in sediment and water columns. There are many factors effecting microbial 

transport. Microbes can be found in three different states in waterways, 1) unattached 

microbe; 2) attached microbe; 3) resuspended microbes. The unattached microbes are 

osmotically similar to water and tend to flow in the same velocities without sedimenting. 

These microbes are freely-suspended and may create bonds with other particles due to 

electro potential attractions, decreasing their buoyancy and therefore settling faster. 

Planktons are mostly organic matter and contain many organisms. The attached microbes 

tend to be associated with an organic or inorganic conglomerate. The attached particles can 

be superficially attached or be completely sorbed into the particle. Sorbed particles are more 

difficult to remove from sediment and often require physical removal (Berry 1991). For this 

study sorbed and attached are similar and henceforth shall be referred to as attached.  

The first state as an unattached microbe the likelihood for sedimentation or 

deposition is low and is considered negligible in most cases. The second state is an attached 

microbe on a particle, which will also have similar deposition rates as the attached sediment 

particle. Lastly, the microbe could be attached in the sediment bed and resuspend. In the 

third case during resuspension the microbe could become dislodged and become unattached 
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or the particle could remain attached and settle back into the sediment bed (Pachepsky and 

Shelton 2011). Many previous works on the topic of attachment and resuspension (Arnon et 

al. 2010; Fries et al. 2008; Jamieson et al. 2005; Pachepsky et al. 2006; Rehmann and Soupir 

2009) call for further investigation into the attachment ratios of microbes to be completed. 

There is also on going work on pathogenic survival, and resuspension. The resuspension 

particularly is not understood in sediment bed.   

Pathogenic Survival  

Once a pathogen has moved into the environment there are a number of factors 

effecting the survival within the confines of the sediment and water column. Previous 

studies have determined that fecal bacterium persist as a source in stream beds (Droppo et 

al. 2009; Haller et al. 2009). Research is needed regarding long-term survival and 

deactivation. Deactivation occurs when a cell is no longer culturable, dying or lysis. E. coli 

concentration decreases by orders of magnitude within a matter of hours outside of an ideal 

host environment, in this case the environment of the lower intestine.  However, if 

attachment occurs, deactivation can take much longer depending on environmental, water, 

and sediment conditions. Conditions influencing the deactivation time include organic 

matter, salinity, sediment fractionation, solar radiation, predation and sediment size (Burton 

et al. 1987; Garzio-Hadzick et al. 2010; Haller et al. 2009; Jamieson et al. 2005). These 

conditions cover the environmental, water column and sediment impacts.  

Environmental impacts on survival rates such as temperature and solar radiation are 

very important once the microbe has reached the waterbody. The lower temperatures found 

outside of the human body limit pathogenic survival, due to optimum growing temperature 

for fecal bacteria being human body temperature of 25-35
o
.  However, pathogens have been 

found to survive at 4
o
C, indicating the ability to survive winters in sediments (An et al. 

2002).  Solar radiation also causes a large amount of deactivation in streams; however 

sediments are shielded from sunlight in the stream beds. There is also a seasonal variation in 

the amounts of E. coli  found in streams and studies have found E. coli  concentrations are 

higher during the winter due to less predation by  stream prokaryotes (Pachepsky and 
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Shelton 2011). This leads to a reservoir of microbes being deposited during the winter with 

slower metabolism, only to be resuspending in the spring.   

Water impacts on pathogens include salinity and nutrients. Salinity has been found to 

negatively influence cell survival for pathogenic bacteria (Anderson et al. 2005). Nutrients 

such as nitrogen and phosphorus, increase in the sediment due to deposition (Scarlatos 

1997).  This creates a zone of increased activity in the water column.  

Sediment impacts include size of parts and organic matter concentrations. Burton’s 

study with various pathogens in freshwater sediments tested the survival times of in 

continuous flow chambers.  E. coli was been found to survive in 25% fraction of clay longer 

than in any other type of sediment, in comparison to Pseudomonas aeruginosa, Salmonella, 

Newport, and Klebsiella pneumonia (Burton et al. 1987). This fraction of clay was in 

comparison to the clay, silt, and sand ratios of the river sediment and allowed E. coli to 

survive pas the 14 day study at 6 Log cfu/mL concentrations in comparison to 3 Logcfu/mL 

for lower percentages of clay. The study was done in completely autoclaved sediments, to 

minimized other interactions and predation. Garzio-Hadzick  tested the particle sizes effects 

on deactivation, smaller particles sizes give less deactivation and decrease sensitivity to 

temperature (2010). The experiment found longer survival rates in sediment than water due 

to protection from predation. These studies overview the idea that in order for microbes to 

remain active they must start attached or become attached quickly to avoid deactivation due 

to solar radiation or predation (Hipsey et al. 2006). El Ganaoui (2007) has also proven an 

increase of pathogen concentration in the fluff layer, or superficial layer, of biofilms. This 

can be caused by higher amounts of trapped nutrients which allow pathogens to survive.  

Another survival influence in stream sediments is organic matter.  Haller (2009), 

similarly to Burton,  noted that higher amounts of organic matter increased pathogenic 

concentration times. The survival rate in sediment was up to 50 days. The organic matter for 

the longer concentration times included up to 21% organic matter in comparison to other 

sites at 12.6% or 1.8 %. Chandran also found organic carbon content increased as the 

sediment survival increased, for E. coli, S. paratyphi and V. parahaemolyticus. Not only 
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bacteria but pathogens which have a much longer survival rate can be protected from 

predation in stream sediments. 

Survival rates have also been researched in-situ experiments. Experiments on direct 

survival rates have found in-situ pods up to 4 months even with a 4 log die off rates (Davis 

et al. 2005). Jamieson (2005) found survival rates up to 6 weeks with first order decay for E. 

coli. Direct deposit manure studies found that the survival rates change over time and 

partition into a liquid or solid runoff state (Pachepsky et al. 2006) causing an unattached and 

attached fractions. LaLiberte (1982) studied E. coli survival and found there was a high 

relationship between past contamination and resuspension, due to a reservoir effect of 

pathogenic bacteria. Sediment can be used as an indicator of long term water bacteria 

concentration (Chandran et al. 2011).  The history of stream sediment and flow rates can 

help predict pervious pathogenic concentration or pathogen build up.  

Microbial Attachment  

Microbial attachment is a relativity new dimension to bacterial load monitoring. 

Only recently have studies found a direct correlation between sediment movement and 

microbial movement (Sinclair et al. 2009). Microbes can be found in varying stages of 

attachment in sediment streams: unattached and attached. The first stage is free floating, 

where predation, solar radiation and other forms of deactivation results in observed 

exponential decay.  The second stage is particle attachment, attachment is more prevalent in 

3.2-4.5 micron particles with high surface area (Hipsey et al. 2006). Previous models have 

also found that attachment ratios are higher with smaller particle sizes (Pandey et al. 2012).  

Another stage is deposited unattached bacterial cells or attached cells that become dislodged, 

which can resuspend easily due to their small size. This stage has low concentration due to 

the low deposition rates of such fine particles. The last stage is the microbes that are 

attached and deposited at the sediment bottom. This fraction resuspends and causes an 

increase in the expected concentration of models.   

Attachment has been found to depend on many factors, specifically environmental 

factors, such as extra polymeric substance (EPS) and flocs in sediment (Droppo et al. 2009). 

However the correlation does not apply in all situations. Nagels found boulders or large 
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gravel covered with EPS were not a significant source of bacterial resuspension (Nagels et 

al. 2002). The limitation of this study was the size of the particle outweighed the ability of 

the flow rate to reach critical shear stress. EPS is a very important factor in biofilm 

assessment and accounts for 90% of the matrix of microbial organ in streams (Karunakaran 

et al. 2011). In modeling Wu however didn’t include the amount of E. coli was attached or 

unattached during resuspension (2009). Genetically, there are also different attachments 

based on the cells (Pachepsky et al. 2008). Pachepsky theorized the pathogenic and non-

pathogenic E. coli may attach different to particles.  This research will lead to genetic 

sequencing of specific E. coli cells and being able to characterize attachment by genetic 

information.  

The effect of attachment due to the properties of the water can also be examined. 

Salinity decreases the survivability and the attachment therefore decreases (Anderson et al. 

2005). Another effect water has on bacterial attachment is turbidity. As the turbidity 

increases in the water more particles are floating, which leads to higher attachment. Higher 

turbidity can also create a more hospitable environment by providing nutrients to be readily 

available.  

There is disagreement in the literature regarding sediment factors effecting 

attachment and which factors are responsible for bacteria-particle interactions. Jamison 

assumed the microbial attachment remains constant after initial attachment has occurred  

(2004). However, Berry assumed there were two levels of attachment one weak electrostatic 

force and another strongly bonded electrostatic force (1991). The weak electrostatic force is 

more likely to remove attached microbes, while the strongly attached force is similar to 

Jamison’s attachment. These electrostatic forces have been found to be caused by clay 

fractions that are often in clay bi-layers with a positive electrostatic charge on the outside, 

whereas bacteria walls are negatively charged. However others have suggested sand 

particles with the larger surface area and grooves (Pachepsky and Shelton 2011) have higher 

attachment. All of these factors of sediment should be investigated further.  

Microbe attachment has been studied thoroughly and reported under different 

conditions. Hipsey (2006) found attachment ratios of up to 80% and the strongest correlation 
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was with the fine particles of clay. Clay percentage is highly correlated with attachment in 

various studies (Bai and Lung 2005; Cho et al. 2010; Dorner et al. 2006; Fries et al. 2008; 

Garzio-Hadzick et al. 2010; Hipsey et al. 2006; Passerat et al. 2011). Hydrology and weather 

events also effect attachment. Attachment during large storms has been measured at 38% 

over a summer season (Fries et al. 2006) .  The study looked at the calculated errors for 

more than once cell attached to one particle and found the error to not significantly alter 

effect on bacterial transport. This leads us to assume a one to one cell to ratio.  

Various studies have investigated the microbial attachment in the field. Soupir 

(2006), found attachment ratios of 53-80% in field manure application runoff and Murihead 

(2005) found cowpats attachment is 8% only and does not change with a rainfall event. 

Passerat (2011) found an attachment of 77% to suspended matter or solids during a 

combined sewer overflow event.  Passerat was able to calculate 89% of the CSO discharge 

was contributed by surface water runoff which led to high volumes of water discharging. 

Attachment ratios are also different among different microorganism species.  Krometis 

(2007) found 40% attachment with fecal coliforms, E. coli and Entercocci, 65% association 

with Clostridium perfinges, and only 13% of total coliphages. Krometis looked at storm 

variability and conclude the partition was similar through the storm events. Storm evens lead 

to the resuspension of attached particles within waterways.  

Resuspension 

 Resuspension causes waterways to exceed maximums under TMDL regulation, due 

to bacteria resuspension caused by flow events from sediment bed. Bacterial transport 

equations can benefit from a thorough study of the resuspension in different events and 

sediments. E. coli  and fecal coliform concentrations are greatest in the top centimeter of 

sediments and could be 100 to 1000 times higher than the bacteria concentration in the 

overlying water column (Pachepsky and Shelton 2011). Most watershed quality models have 

ignored resuspension or have assumed that it is a much smaller fraction then load from 

surface runoff (Je and Chang 2004). These models have not been able to accurately predict 

microbial loads especially after droughts followed by high flow events (Characklis et al. 

2005; Davis et al. 2005; Sinclair et al. 2009; Tian et al. 2002). The rising limb of a storm has 
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been found to have 2 orders of magnitude E. coli higher concentrations after a relatively dry 

period (Muirhead et al. 2005; Nagels et al. 2002). Therefore resuspension should be studied 

for further understanding of higher concentrations of E. coli.  

 Hydrological event can cause resuspension by crossing of critical shear stress. 

Jamison measured the pathogen concentration in the rising limb of a storm and had the 

highest amounts of bacterial resuspension (2005). This interaction is due to attachment after 

the critical shear stress has been reached in the stream. The critical shear stress is the 

minimum amount of force to move a particle in a stream.  It has also been found that 

hurricanes (Fries et al. 2006; Fries et al. 2008) are well correlated to resuspension in 

comparison to TSS and turbidity. Fries found that resuspension threshold was 5 mph or 2.2 

m/s during hurricanes.  Other sediment disturbances have also been found to correlate wave 

and wind to bacterial resuspension (Ge et al. 2010).  Any interaction between the water 

column and sediments can cause resuspension including human interaction such as 

swimmers.  

The resuspension also has much to do with the sediment which contains the 

microbes. The smaller particles have a lower shear stress threshold that causes resuspension. 

Shear stress was found to be 1.5-1.7 N/m
2
 in cohesive sediments (Jamieson et al. 2005). The 

minimum velocity required to move sediment is a function of sediment size compaction, 

cohesive fractions and compaction time (Redondo et al. 2001). The sediment resuspension is 

also very dependent on the clays or cohesive particles within the sediment (Jamieson et al. 

2005; Krishnappan 2007; van Rijn 2007; Ziegler and Nisbet 1994). Sediments also 

resuspend differently after multiple hydraulic events. During hydraulic events, daily loading 

may be months’ worth of bacterial concentrations (Krometis et al. 2007). Looking at many 

storms, the source or storage of bacteria can be depleted over several storm periods 

(Jamieson et al. 2005; Muirhead et al. 2004). With the sediment beds being a repository for 

microbes that have settled out, it has been suggested that testing methods may be not be 

sampling recent E. coli concentrations but deposited pathogens or microbes (LaLiberte and 

Grimes 1982).  Depositional history therefore should be taken into account while looking at 

the modeling resuspension.  
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 Other factors play a role in sediment and bacterial resuspension. Stream dispersion 

does not seem to affect resuspension, however shear stress and entrainment coefficient have 

a correlation (Cho et al. 2010). Resuspension has also be modeled as directly correlated to 

shear stress (Collins and Rutherford 2004). Slayer showed pathogen distribution in streams 

has been found to be independent of salinity and temperature (Sayler et al. 1975). 

Resuspension can lead to higher estimates of loads and cause problems downstream when 

the particles again deposit. There is also a lack of information looking at the resuspension of 

attached and unattached particles in the literature.  

Deposition 

 Deposition occurs to particles in floc or attached for most circumstances. It has also 

been found that there is a rapid decrease in microbial concentrations following a rapid storm 

surge (Muirhead et al. 2004). Cho found long tails after resuspension experiment (2010), in 

which measurements were taken after a runoff flow event into a creek.  Cho measured 

breakthrough curves along different stations in the creek to see variations spatially and over 

time. The microbes being attached resuspension and becomes dislodged while in water 

column. Cho’s conclusion also conferred the theory of microbes having relatively no settling 

individually. In another study, Stone (2008) proved that the higher the shear stress the lower 

the deposition despite biofilm stabilization. Stone showed changes in consolidation and bio-

stabilization were causing a higher shear stress due to the complexity and branching of the 

biofilm structure. Deposition therefore can be effected by low flows and increase in 

suspended particles. Particles that increase deposition include flocks created or removed 

from biofilm structures.  

Sediment Transport 

 Studies of resuspension are analyzed in two parts, microbes-water environment 

interactions and sediment-microbe interactions. Therefore it is important to understand the 

sediments and how experiments can be used to model similar situations. A large effect of 

erosion in sediments, and consequently resuspension of microbes, has been depositional 

history of sediment (Kim et al. 2010; Stone et al. 2008). Droppo found depositional history 

effected resuspension rates. The sediments deposited during a time of higher shear stress 
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have lower resuspension rates than those deposited under quiescent conditions (Droppo et al. 

2001). Flume studies with kaolinite clay and bed sediment deposition show modeling does 

not take into account the bed depositional history and therefore underestimates the bed 

strength. Lau’s experiments showed eight times the shear stress created by depositional 

critical shear stress (Lau and Droppo 2000).  Therefore sediment depositional history should 

be included into studies and include them into calculations of sediment transport 

calculations.  

 Along with depositional history, particle size distribution, bio fractions, particle 

densities, sediment cohesion and environmental conditions factor into the sediment 

stabilities. Only recently have researchers looked at cohesive sediment transport 

(Krishnappan 2007). Research has indicated the increased clay fractions make the cohesion 

stronger and cannot be molded with Stoke’s law or linear relationships. More complicated 

models have been created from experimental data (Lick 2009). However, these models focus 

on the cohesion caused by clay and not the biofilm aspect of the cohesion. These models are 

also meant for sediment, not bacterial resuspension. In this section various aspects of 

sediment erosion and how it relates to resuspension are discussed.  

Biofilm 

 A biofilm is one of the most difficult substances to define. The study of biofilm is a 

mixture of many interrelated disciplines. Karunakaran suggests a holistic view to understand 

biofilm must be taken. There are many organisms that create a biofilm, including 

cyanobacteria, chlorophyll organisms, diatoms, and other microbes (Karunakaran et al. 

2011). While investigating the cross-sections of stream biofilm Gerbersdorf, found large 

amounts of diatoms structures, and macrofana. The study also found that metabolic activities 

by microalgae, change EPS, and ionic binding sites while filling voids in sediment matrix 

(Gerbersdorf et al. 2008). Garcia-Aragon et al (2011) found the biofilm matrix to be made 

up of clay, silt, microbes, algae diatoms and EPS. It has been estimated that matrices of 

organic and inorganic materials may prolong the life of organisms (Droppo et al. 2009). 

Others have tried to quantify existence of biofilm in other ways including investigating 

chlorophyll a concentrations. 
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 Finding indicators of biofilm are necessary for bio-stabilization quantification. 

Sutherland found chlorophyll and mucilage are both indicators of a good biofilm. The study 

also found the deeper sediment effected with biofilm the higher the shear stress (Sutherland 

et al. 1998). Friend (2003) classified biofilms and found cyanobacteria were the most 

prevalent type of benthic stabilizers. Biofilm is known as a type of benthic stablizied due to 

its cohesive nature. Investigators found that there was a positive correlation with bed 

stability and colloidal carbohydrates released by the biofilm organisms. A seasonal biofilm 

fluctuation, due to EPS formation, within the biofilm structure was also found (Friend et al. 

2003). The most prevent algae was found to be cyanobacteria in older biofilm (Droppo et al. 

2007). A microscopic investigation can measure the development of the biofilm by 

identifying and characterizing the organisms.  

In streams, biofilm are characterized by the flows during development. Biofilms 

which develop under higher velocity conditions are often small and closely attached to the 

bed, whereas those developed under lower flow conditions are fluffier and less attached to 

the bed in mushroom shapes.  Studies found biostablisation better with shorter biofilm 

attached to the bed. In streams the layers of biofilm grow and slough off, then are regrown in 

a continual cycle depending on the season and flow rates of the particular waterbody. 

These biofilm structures affect the critical shear stress of sediments by increasing 

cohesion. Diatom structures have been found to increase critical shear stress in sediments 

(Paterson 1989). The biofilms are also found to change the sediment properties with 

increases in benthic stabilizers (Bale et al. 2006). Not only does the biofilm layer increase 

the cohesive strength it also creates a source of nutrient rich area in the fluff layer 3-48 times 

higher amounts of phosphorus in the biofilm (Kleeberg et al. 2008).  Biofilms have also 

been grown in the lab on aquacultures on kaolin clay, where biofilm stabilization was more 

influential in erosion control than deposition (Droppo et al. 2001; Lau et al. 2001).  Biofilm 

laden sediments have been tested for the organic fractions and found the organic fractions 

found to be 95.5% coarse sediments, and 65% for fines sediments (Koutny and Rulik 2007). 

There is a larger structural matrix for biofilm when there is a higher pore volume.  
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Studies have shown direct correlation between EPS increases and critical shear stress 

(Gerbersdorf et al. 2008).  Droppo found testing flume biofilms, biofilm collapse occurs to 

make a slightly more cohesive layer called compression bed into consolidated bed. These 

consolidated beds have a considerably higher critical shear stress  (Droppo and Amos 2001). 

Biofilms have been found to exist in both freshwater and marine environments. However 

there is a possibility to scour away the biofilm in high flow situations. Bale found turbidity 

caused by wave action can lower the biofilm (Bale et al. 2006).  This could be due to a lack 

of sunlight reaching the biofilm.  

Biofilms have also been researched in bench laboratory studies. Droppo (2007) 

tested artificially grown biofilms from natural surfaces. Droppo et al. found the critical shear 

is not as high as reported in other papers with artificial biofilms. Other flume tests have 

shown that there are differences in critical shear stress caused by biofilm loss and rips and 

tears of the biofilm (Droppo et al. 2007).  Increase in biofilm increased the critical bed shear 

stress as well as decreasing the suspend solids and erosion rates. Garcia-Aragon found 

consolidation was less effective at changing the critical shear stress then biostabilization 

(Garcia-Aragon et al. 2011). Other studies have also showed that as biomass increases the 

mass retained in the biofilm matrix increases (Bottacin-Busolin et al. 2009).  This is due to 

the EPS’s cohesive nature which traps in particles.  

Sediment Shear Stress & Resuspension Studies 

 There have been various studies that look at how the shear stress changes over the 

depth of the sediment. Researchers have analyzed sediment size with a Laser In-Situ 

Scattering  Transmissometer (Hipsey et al. 2006). The study found correlation of fecal 

coliforms with 3.2 and 4.5 micron particles. Lick considered simple equations capable of  

modeling resuspension based on mass balance (Lick et al. 1995). Most equations take into 

account particle density and particle size. Rijn (2007) looked at wave action and found sand-

silt particle size does not change transport as much as hypothesized, however they found 

salinity and water temperature make a difference in shear stress.  The higher shear stresses 

cause more complex sediment issues including lower floc levels. Witt (2003) was able to 

test the resuspension changing through the water column in floods and storms events. A 
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major part of sediment shear stress and resuspension studies has been the idea of creating or 

testing samples as close to the environment as possible.  

The sediment’s organic matter, and microorganism’s content may also impact 

sediment critical shear stress.  It has been found that biofilms significantly increase the 

deposition of particles under lower shear stresses.  Other studies have tried to correlate 

hydrodynamic transport with biofilm content, and a layer theory which states there are 

different layers to critical shear stress (Arnon et al. 2010). Arnon found top layer shear stress 

was 0.025-0.05N/m
2
, and the second layer 10 times larger shear stress. The study 

hypothesized that the top layer is a fluff layer which is a weakly attached biofilm. El 

Ganaoui (2004) studied the fluff layer and found the critical shear stress was 0.025-.05 N/m
2
 

at three different sites. El Ganaoui also found a second brake through shear stress, which 

were 10 times larger which could be due to a biofilm matrix. This biofilm matrix is 

hypothesized to have more EPS attachment of soils filling up the void spaces and 

dramatically increasing the shear velocity. Droppo measured bio-stability and found erosion 

rates of 0.06-0.1 Pa (Droppo et al. 2007). Schaaff (2002) found fluff layer critical shear 

stresses to be 0.02 N/m
2
 and 0.05 N/m

2
. The study found nitrogen and phosphates in excess 

of the calculated deposition, which allows a repository of nutrients available at the bottom 

sediments similarly to bacteria. Nutrients have been found to increase with a decrease of 

inorganic material (Scarlatos 1997); this permits nutrient concentration to increase in the 

biofilm.  

Other field studies have been conducted to investigate the resuspension in the field. 

Bale looked at in-situ sites with a mini flume to measure shear stress of 0.245-0.025 Pa 

(Bale et al. 2006). The study found shear stress was highly correlated to soil density. Bai 

found equations to relate suspended solids and E. coli  concentrations that were confirmed 

with a model (Bai and Lung 2005). Looking at floc size as the shear stress increased the 

flocs grew larger up to 0.323 Pa to a limit.  Another model looked at  major factors on the 

erosion of cohesive sediment found deposition, time of consolidate, rate of application and 

stabilizing effects of microbes were most important (Krishnappan 2007). Muirhead’s study 

on cow crossings was  unable to find a higher concentration at crossing and the 

concentration were  similar to the peak concentrations in the rising limb of the storm 
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(Muirhead et al. 2004). This showed the biofilm could resuspend and contribute to the E. 

coli concentrations measured during hydrologic events.  

Bacteria Studies 

 Various bacterial studies have been complete investigate pathogenic resuspension. 

Jamison completed a study on two streams to look at survival and transport of 

microorganisms. Using NAR E. coli  as tracer organisms in streams and found that there was 

a higher concentration in smaller particle sizes (Jamieson et al. 2005). Studies have also 

looked at capsulated E. coli in membranes keeping competitors out and measuring the 

deactivation time. Davis found in the capsules E. coli lasted up to 75 days in Karst springs 

(Davis et al. 2005). Long term studies have also found E. coli  strains in creek after 

introduction of NAR 1-3 weeks after inoculation  (Jamieson et al. 2005). Detection of E. coli 

is effected by different factors.  

A study by Murihead used traceable NAR E. coli for bacterial transport studies. They 

measured the background concentration of E. coil during a storm and found a difference of 

two orders of magnitude in comparison to regular stream flow. The amount of bacterial 

storage is not infinite and subsequent storms a decrease was observed  in the peak bacterial 

concentration (Muirhead et al. 2004). Other studies have shown increase in biofilm was well 

correlated to deposition. Arnon observed an increase in particle retention with an increase in 

particle size and EPS concentration (Arnon et al. 2010).  

Resuspension Models   

There are various models for resuspension of sediments in the literature. Most 

models have incorporated at some point Stokes law, mass balances, kinetics, diffusion, 

sediment properties and water properties (Rehmann and Soupir 2009; Tian et al. 2002). 

Some models have incorporated temperature, pH, DO, solar radiation, nutrients, and 

turbidity-flux of organisms. Tian (2002) considered the spatial and temporal variation of 

sources and assumed a resuspension of 7% daily flow volumes per year. This is a constant 

rate instead of value calculated through a means of flow rates, or critical shear stresses.  In 

comparison Hipsey’s model was able to determine temporal and spatial variability which 
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emphasized different rates of mortality, growth and sedimentation (Hipsey et al. 2008). 

Models have looked at various ways of incorporating the resuspension of sediment and 

microbe attached concentration into water quality models.  

It has been difficult to incorporate point and non-point sources into water quality 

models. Some models have been able to separate point and non-point sources (Petersen et al. 

2009). Peterson, was able to calculate the amount of reductions required to meet TMDL’s 

using an excel model and assumed a steady resuspension load.  Soil and water assessment 

tool (SWAT) is a widely used model for waterbody and water quality modeling. However, 

SWAT does not include the resuspension of fecal materials (Neitsch et al. 2005). Although 

there are many models none of them have truly incorporated the attachment and 

resuspension traits crucial to bacterial transport (Benham et al. 2006). Beham noted the 

SWAT model was used to assess bacterial concentrations and simplified the model to be a 

mass flux without resuspension. SWAT did include bacterial survival that was completely 

dependent on temperature. Researchers are looking at the sediment and water column 

interactions and how they affect resuspension.  

While new models are starting to include resuspension previous versions generally 

ignored resuspension. Wilkinson ignored resuspension from the sediments and its effect on 

load (Wilkinson et al. 1995). Wikinson’s model investigated channel storage of fecal 

coliforms and flow was correlated to higher coliform counts. Other studies have specified 

resuspension loads independent of flow, and sediment properties (Petersen et al. 2009). In 

these cases most models specify attachment ratios and assume a bacterial load. Russo (2011) 

modeled attached resuspension and found a good correlation to bed and critical shear stress. 

The authors carefully to look at the silt and clay fractions, densities, settling velocities, 

critical shear for deposition, critical shear, erodibility factor, fecal coliform parameters, 

portioning, decay rate, suspended solids associated decay rate, and bed-sediment associated 

decay rate. Using these parameters Russo concluded during high flow events resuspension 

was a much smaller fraction of the overall concentration (Russo et al. 2011). Other models 

have also specified resuspension based on the shear stress (Sanders et al. 2005) and  

investigated the tidal effects on total coliforms, E. coli and Enterococci.  Sanders measured 

concentration of pathogens in various costal sediments.  
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Sediment concentrations play a large role in resuspension calculations. Wu (2009) 

used a resuspension value proportional to flow rate and E. coli concentrations in sediments. 

However, Wu found no correlation with particle size or sediment bacterial concentration 

(2009). Kim modeled resuspension with SWAT and modified SWAT to include 

resuspension and deposition (2010). Kim (2010) identified issues with high E. coli  runoff 

and underestimated the persistence in stream, this was probably due to the lack of loading 

from calculated resuspension. Cho correlated turbidity to resuspension of E. coli (2010). 

Another way to correlate resuspension is through turbidity of water by assuming a ratio of 

attached E. coli concentration within the sediment. Another method of calculating 

resuspension is to assume it is proportional to the concentration in the sediment (Sanders et 

al. 2005). The concentration is dependent on historical loading of the stream to achieve a 

more accurate concentration.  

Along with SWAT and Excel used to calculate resuspension, Droner used 

WATFlood to estimate resuspension at equal or greater values for land based sources 

(2006). The study showed correlation between land application and large loads during after 

the first rain, assuming complete deposition due to tile flow.  Bai assumed linear to model 

incorporate attached bacteria in Environmental Fluid Dynamics code model. The study 

didn't consider the different distributions of the bacteria and assumed a uniform layer (Bai 

and Lung 2005), which simplifies the model. However, this assumption causes limitations of 

application to a stream bed.  

Other models were more particular about incorporating the sediment properties, such 

as cohesion. It has been shown that as particle size decrease cohesion becomes dominate 

(Pandey et al. 2012).  Lick suggested a sediment resuspension model based on cohesive and 

non-cohesive properties. He related non cohesive shear stress directly to the size of the 

particles through experimental data (Lick 2009). A model developed by Ziegler was found 

to accurately predict resuspension of cohesive and non-cohesive particles (Ziegler and 

Nisbet 1994). Ziegler was able to model flooding situations and sediment concentrations. 

Flooding situations often provide the best contrast of data to compare with quiescent 

conditions. Being able to compare increase in flow rate is critical.  
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Larger scale model tests have also been completed in the field. Pachepsky modeled 

bacterial transport and survival at different scales including pedon, hillslopes and 

watersheds.  He found that there were different fitting factors and different release rates over 

time (Pachepsky et al. 2006). Factors included survival, attachment, and transport. 

Attachment coefficient was related to percentage of clay particles and threshold of 

resuspension per volume of flow. Hipsey also modeled resuspension as a function of flow 

(Hipsey et al. 2008). Jamieson choose to model equations of concentration based on the 

fractions of E. coli in coarse or fine sediments and called for better understanding of the FC 

associated with particles better (Jamieson et al. 2005). The modeling parameters needed are 

factors including attachment and concentration of pathogens in sediments. These parameters 

will be used to calculate the flux of pathogens being resuspended into the water column.  

Future   

Many of the studies looked at in this review have mentioned how little data has been 

collected. There are variations of the attachment ratios and which are not fully understood 

due to the variable sensitivity.  No studies on resuspension and attachment fractions have 

been completed for microbial concentrations. These studies can be based on sediment 

studies and compared or modified to meet the future need (Rehmann and Soupir 2009).  No 

comparison studies of different attachment and resuspension rates with different river 

bottom sediments have been completed.  This is a major issue when looking at attachment 

rates which relate to the resumption rates in waterways with different bottom sediments.  

Water column sampling does not tell the whole history of the sediment behavior. 

Droppo calls for sampling methods to change due to sediment concentrations being a major 

source of the load (Droppo et al. 2009) not only in the water column. This would make it 

easier to model the water quality before flooding events in order to provide warnings to 

recreational users. Care should be taken to investigate pathogen concentration in high use 

recreation areas and food production waters (LaLiberte and Grimes 1982). This direct 

contract of high concentrations of pathogens should be limited and therefor prevention is a 

major issue.  
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Other improvements in the future of water quality can be achieved in preventative 

care and faster detection of pathogens. The sources of pollutants should be limited by 

allowing riparian buffers between streams which limit the velocity of runoff and adding 

microbial disinfection treatment such as UV into Waste Water Treatment Plants (Ouattara et 

al. 2011).  Only by limiting the sources of pollutants will we be able to control the 

resuspension effects. Detection is also a big part of improving the water quality. Detection 

of E. coli can be done through membrane filtration but this method often takes longer than 

the threat is prevalent.   Although this method takes 24 hours, it is cost effective and well 

known. Pathogens should quickly and effectively be reported to those who will be affected.  
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Abstract  

Microorganisms in streams are potentially transported as freely suspended organisms or 

attached to particulates. Many water quality models currently neglect resuspension, an 

important process to predict in-stream bacteria concentrations. The objective of this work is 

to measure resuspension of E. coli from different bottom sediments under a range of flows. 

An assessment of the attached fraction and resuspension rate was completed by measuring 

E. coli concentrations in a recirculating flume at two locations. The test was completed for 

three different bottom sediments: sand, sand-silt, and sand-silt overlain with biofilm. The 

experiments were conducted at flows below and above the calculated critical shear stress, as 

well as two different water depths. Attachment ratios were assessed using a combination of 

filtration techniques. Attachment ratios increased as particle sizes decreased and percent of 

attached E. coli generally decreased after the critical shear stress was surpassed.  Statistical 

analysis found that both bottom sediments and flow rate impact attachment of E. coli. The 

calculated unattached E. coli resuspension rates from the different bottom sediments were 

1.32E-6 cfu/m
2
/s for sand, 1.03E-6 cfu/m

2
/s for sand-silt, and 1.78E-6 cfu/m

2
/s for biofilm. 

The calculated attached E. coli resuspension rates were 3.84E-6 cfu/m
2
/s for sand, -2.84E-6 

cfu/m
2
/s for sand-silt, and -8.06E-6 cfu/m

2
/s for biofilm. Statistical analysis found that 

bottom sediments and flow rate impact total E. coli resuspension, attached E. coli 

resuspension, and unattached E. coli resuspension. The model, calibrated using the 

calculated resuspension values, was able to accurately represent both attached (r
2
= 0.91) and 

unattached (r
2
= 0.85) E. coli resuspension. This work increases knowledge and ability to 
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track particles in different environments, by separating unattached and attached 

resuspension. It is possible to model attached resuspension with sediment resuspension 

equations. The risk of unattached fraction of E. coli resuspension still needs further 

assessment. These equations should be applied to data collected in the field where turbulent 

flow may affect the resuspension of various bottom sediments.  

Introduction 

The presence of pathogenic organisms in waters has compromised water quality and 

poses a risk to human health. While many pathogen impaired waters are rivers or coastal 

waters, pathogen contamination of public beaches is especially concerning because children 

or immunocompromised individuals could come in contact with infectious microorganisms. 

Pathogens can be harmful through contact with contaminated waters by becoming ingested 

or entering via open wounds. Various studies have found that fecal contamination leads to 

illness among swimmers (Marion et al. 2010; Sinigalliano et al. 2010; Wade et al. 2010). 

The volume of water ingested during recreational activities was found to be 4 mL in 

comparison to 10 mL during swimming activities (Dorevitch et al. 2011). Infectious dose of 

E. coli can be anywhere from 10 to 100 cfu/100mL, and the EPA single sample maximum 

standard for E. coli for contact recreation is 235 cfu/100mL. An estimated 120 million cases 

of gastrointestinal illness are caused by bathing in polluted coastal waters (Shuval 2003). 

Pruss (1998) found that in both fresh and marine waters increased risk of gastrointestinal 

illness (GI) systems was found from few cfu/100mL to 30 cfu/100mL. Due to the increasing 

scarcity of fresh water, protecting water resource has become an international goal. One of 

the United Nations millennium goals includes access to safe drinking water (Scachs 2005), 

and for that goal to be met accurate models of pathogens in aquatic environments must be 

provided.  

Pathogens can enter waterways through both point and non-point sources. Point 

sources include wastewater treatment plants and stormwater outfalls, while non-point 

sources include runoff from agricultural lands receiving manure application, grazing cattle 

allowed direct access to streams, leaking rural septic systems, and wildlife. Pathogen 

contamination from non-point sources is difficult to quantify. After bacteria enter water 
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bodies they settle into bottom stream bottom sediments or remain freely suspended and are 

transported downstream.  

Previous studies have determined that the percentage of microbial attachment in 

streams ranges from 8-80% (Fries et al. 2008; Krometis et al. 2007; Muirhead et al. 2005; 

Pachepsky et al. 2006). Higher attachment is observed to increase with an increase in 

surface area and larger concentration (Hipsey et al. 2006). The percent attached is influenced 

by the clay fraction, organic material, and particle surface area (Bai and Lung 2005; Cho et 

al. 2010; Dorner et al. 2006; Fries et al. 2008; Garzio-Hadzick et al. 2010; Hipsey et al. 

2006; Pachepsky and Shelton 2011; Passerat et al. 2011).  Investigations have also shown 

differing levels of attachment due to weak electrostatic forces and adsorbed particles (Berry 

1991). The attachment to particles changes in-stream transport behavior of microorganisms, 

leading to greater deposition, which is not normally associated with free floating, buoyant 

bacteria. These attached microorganisms deposit in the stream sediments and are sheltered 

by their environment from deactivation from sunlight or predation. Pathogens that settle into 

bottom sediments are shielded from natural predators, and therefore the microorganisms are 

able to persist and potentially remain virulent for longer periods of time (Burton et al. 1987; 

Haller et al. 2009; Jamieson et al. 2005). The sediment bed environment also provides 

nutrients to sustain and in some cases promote growth. After settling into bottom sediments, 

bacteria may attach to particles to increase survival (Garzio-Hadzick et al. 2010). The 

surviving and possibly multiplying pathogens can then act as a source to water column 

through resuspension (Droppo et al. 2009; Haller et al. 2009), especially after periods of low 

flow. 

 Biofilms have also been found to impact in-stream microbial transport through 

attachment and increasing critical shear stress (Droppo et al. 2007; Garcia-Aragon et al. 

2011; Sutherland et al. 1998).  Biofilm growth provides a matrix which stabilizes the 

sediments of streams and includes a variety of organisms, such as cyanobacteria, 

chlorophyllic organisms, diatoms and other microbes (Karunakaran et al. 2011). The 

extracellular polymeric substances (EPS) are made up of mucilage or proteins released by 

the biofilm. The EPS concentration is very important in attachment  (Droppo 2009) although 

not always correlated (Nagels et al. 2002).  Nagels found the size of particles, such as 
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boulders and gravel, can outweigh the effects biofilm factors. Factors in the stream 

impacting resuspension of bacteria from bottom sediments to the water column include 

bottom sediments type and the presence of biofilm. Biostabilization caused by biofilms and 

EPS has been shown to increase the critical shear stress (Droppo 2009; Friend et al. 2003; 

Sutherland et al. 1998). The biofilm along with increasing the shear stress of the sediment 

are found to create an environment of nutrient rich area in the biofilm 3-48 times larger than 

in the water column (Kleeberg et al. 2008).     

Once pathogens are attached to bottom sediments in the sediment bed, particle-

associated pathogens can resuspend during high flow events (Characklis et al. 2005; Davis 

et al. 2005; Sinclair et al. 2009). These resuspension events may contribute to the overall 

pathogen load to the stream, leading to exceeded water quality standards. Fecal coliform and 

E. coli concentrations are greatest in the top centimeter of stream sediments, and have been 

found to be up to 3 orders of magnitude higher than the bacteria concentration in the 

overlaying waters (Pachepsky and Shelton 2011). The highest E. coli concentrations have 

been observed during the rising limb of the storm hydrograph (Jamieson et al. 2005), likely 

due to resuspension of persistent organisms. As available bacteria in bottom sediments are 

depleted, contributions to the water column decrease (Jamieson et al. 2005; Muirhead et al. 

2004). Microbial resuspension has also been observed during hurricanes and turbulent wave 

events due to high winds (Fries et al. 2006; Fries et al. 2008; Ge et al. 2010).  Water quality 

models often ignore the bacteria resuspension process (Petersen et al. 2009), which leads to 

underestimation of concentrations during high flow storm  events and over estimation during 

lower flows due to attachment, deposition and resuspension. While some models include 

resuspension other models ignored resuspension such as Wilkinson’s (1995) model ignored 

resuspension from the sediments and its effect on load. 

Other models have incorporated resuspension into their water quality models. Tian 

(2002) considered spatial and temporal effects on resuspension and assumed 7% daily flow 

volumes per year. Some studies have specified resuspension independent of flow and 

sediment properties (Petersen et al. 2009), while others specify resuspension based on shear 

stress (Sanders et al. 2005). Hipsey related resuspension as a function of flow rate (Hipsey et 

al. 2008).  Soil and water assessment tool (SWAT) is a widely used model for waterbody 
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and water quality modeling. However, SWAT does not include the resuspension of fecal 

materials (Neitsch et al. 2005). Kim (2010) modified resuspension with SWAT to include 

resumption and deposition. However, this model had issues with underestimating the 

persistence in a stream. Lick (2009) suggested using cohesive shear stress and non-cohesive 

shear stress directly to the size of the sediment particles based on experimental data.  Pandey 

(2012) has developed a model based on sediment erosion, from Lick, for attached 

resuspension using shear stress and sediment properties. However, this model does not look 

at unattached erosion rate in various bottom sediments. This lack of equations to model both 

attached and unattached fractions of resuspension cause impairments in the water ways.  

The U.S. EPA has identified pathogens as the leading cause of water quality 

impairments (USEPA 2010). The U.S. uses the Total Maximum Daily Load (TMDL) 

program to set limits on pollutant loads and recommend measures to improve water quality.  

The cost of implementing TMDLs is estimated between 1 and 3.4 billion dollars annually 

(USEPA 2002). The cost of implementation includes modeling the concentrations for 

various storms and flow conditions. These models often ignore the effect of pathogens in 

sediment beds which can be resuspended. Other studies have looked at attachment in field 

studies and tried to model resuspension as a value or a proportional value to the flow rate. 

Most of these studies have been completed in the field and not many have looked at the 

effects of attachment and resuspension in a flume setting. Despite the previous work on this 

topic, a study measuring attachment and resuspension rates as a function of bottom 

sediments and flow is lacking. The goal of this study was to improve understanding of how 

different bottom sediments impact in-stream bacterial resuspension and attachment. The 

objectives were to measure the E. coli attachment ratios in simulated flows over three 

different bottom sediments, flows, and two water depths to characterize bacteria 

resuspension.  The hypothesis of this first goal is that the increased flow rates will increase 

bacterial attachment and resuspension. The second goal of this study was to predict 

resuspension of attached and unattached E. coli as a function of flow and bottom sediments. 

The hypothesis of the model is that different bottom sediments and depths will provide 

different variables for modeling resuspension. The results of this study will improve 

understanding of E. coli attachment to particles and resuspension rates which could be 
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incorporated into water quality models, improving the prediction of pollutant sources for 

load allocations in watershed management plans.   

Materials and Methods 

 The experiment was designed to test two segments of a recirculating flume for E. 

coli concentration and resuspension. Data collection was performed at the indoor flume and 

samples were transported to the water quality laboratory to be analyzed for E. coli 

concentrations. Using the collected data the attached and unattached resuspension were 

calculated.  Calculated values were compared to  segment a model for predicting 

resuspension using a recent approach proposed by Pandey et al. (2012), which uses modified 

sediment Equations developed by Lick (2009). The Equations were modified using the 

calculated resuspension from the resuspension experiments conducted. The model was 

parameterized for different bottom sediments as well as for unattached and attached bacteria 

resuspension.  

 Resuspension Experiments  

 Experiments were designed to assess the attached fraction and resuspension rate of 

E. coli in a recirculating flume at two locations, 4.88m (location 1) and 7.32m (location 2) 

downstream of the flume inlet shown 

in Figure 1. The test was completed 

for three different bottom sediments: 

sand, sand-silt, and sand-silt overlain 

with biofilm. The experiments were 

conducted at flows below and above 

the calculated critical shear stress, as 

well as two different water depths 

which averaged 15 cm and 18 cm 

over all experiments, as described in 

Table 1. All experiments were 

conducted under steady state flow 

Table 1 Overview of Experiment Setup 

Sediment Depth (cm) Q (m3/s) 
Time Periods 

Tested (min) 

Type of 

flow rate 

Biofilm 16 12.60E-03 0, 15, 30, 45, 60 L 

Biofilm 15 14.20E-03 0, 15, 30, 45, 60 M 

Biofilm 15 14.60E-03 0, 15, 30, 45, 60 M 

Biofilm 23 14.50E-03 0, 15, 30, 45, 60 M 

Biofilm 16 16.10E-03 0, 15, 30, 45, 60 H 

Sand 16 4.45E-03 0, 15, 30, 45, 60 L 

Sand 16 5.09E-03 0, 15, 30, 45, 60 M 

Sand 22 4.56E-03 0, 15, 30, 45, 60 M 

Sand 15 10.40E-03 0, 15, 30, 45, 60 H 

Sand-Silt 16 1.56E-03 0, 15, 30, 45, 60 L 

Sand-Silt 14 2.45E-03 0, 15, 30, 45, 60 M 

Sand-Silt 24 3.14E-03 0, 15, 30, 45, 60 M 

Sand-Silt 15 5.44E-03 0, 15, 30, 45, 60 H 
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conditions and water samples were collected at 15 minute increments.   

 The experiments were conducted in a recirculating plexiglass flume (Engineering 

Laboratory Design, Inc., Lake City, MN). The flume was 9.1 m long, 0.6 m wide and 0.6 m 

deep (Figure 1). The slope on the flume could be adjusted five percent and for these 

experiments was set constant at one percent. Water was drawn from a sump by a 

combination of pumps with capacities of 500 and 300 gpm. These pumps were used in 

combination with butterfly valves to achieve the desired flow rates. From a 21.24 m
3
 sump, 

water was pumped to a head tank and then flowed gravimetrically through a flume 

distribution line for constant flow. The flume was fitted with a flow straightener at 0.3 m to 

create steady and laminar flow for all experiments. The flow straighter is a 0.61 m square 

made out of plastic tubes, making a honeycomb, which allow the water to pass through them 

while removing the wave actions created by air bubbles. A weir was installed downstream of 

the flume, to remove bottom sediments from the system. The weir had four sections that 

could be increased at 0.15m intervals, achieving maximum depth of 0.6 m. All water 

samples were collected after steady state had been reached.  

The experiments were repeated for three different bottom sediments: sand, sand-silt 

Figure 1 Flume sampling at two locations and 18 points total, nine per sampling location. 

Bottom sediments was inoculated from 0 to 7.32 m. The 3.0 cm of bottom sediments was 

changed for each set of the experiments.  
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and sand-silt-biofilm. The sand was 149-400 µm diameter quartz (Hallett Material, Des 

Moines, Iowa).  The silt was less than 44 µm diameter, 350 mesh, quartz (Agsco Corp, 

Wheeling, Illinois). The sand-silt mixture was made by mixing equal quantities by mass of 

each material. The depth of the bottom sediments bed was set at 3 cm following the work of 

others (Chapra 1997; Droppo 2009; Haller et al. 2009). The water was also supplemented 

with nutrients including nitrogen and phosphorus to match concentrations of 0.5 mg/L and 

2.5 mg/L, respectively, as observed in a local Iowa stream, Squaw Creek (P.K. Pandey, 

personal communication). The nutrient supplement was ground and autoclaved at 121
o
C for 

20 minutes to remove impurities before being added to the sump. These background 

nutrients were set at three times the background concentration for the growth of the biofilm. 

To dechlorinate the water, water from the City of Ames, Iowa was treated with stress coat 

(MARS Fish Care, North America) by adding  0.17 mL/L stress coat per liter of water 

(McDaniel et al., under revision).  

The seed material for the biofilm experiments was the first centimeter of stream 

biofilm collected from Squaw Creek, near Ames, Iowa. Once the seed sample was collected 

it was filtered to remove the coarse sediments using a wire 60 mesh sieve. Biofilm or the 

fluff layer has been described previously (El Ganaoui et al. 2007; Kleeberg et al. 2008; 

Schaaff et al. 2006) as a community of benthic stabilizers found in stream bottom sediments. 

A biofilm layer study was included to examine the effects of biostabilization on 

resuspension and E. coli association with particles. The biofilm was grown on the bottom 

sediments in the flume following the procedure described  by Droppo (2009), in this 

procedure sediment was deposited under quiescent conditions from 1-3 cm. Grow lights 

were then used to develop biofilm for 12 hours of light and 12 h of darkness.  The flow of 

the flume during development of the biofilm was set between 1 and 5 cm/s (9.28E-4 and 

4.64E-3 m
3
/s). The biofilm was grown for 30 days with a nutrient supplement added weekly. 

Between experiments the biofilm was allowed to recover for one week. The biofilm 

population was sampled after the 30 days to ensure a sufficiently diverse environment. The 

samples were examined by the use of a bright field microscope Zeiss Axioplan II (Carl Zeiss 

Microscopy, LLC, Thornwood, NY 1) to ensure the population of diatoms, blue green algae 

and protozoa were representative of field conditions. The biofilm had reached maturity and 

evenly covered was confirmation using microscopy. After each run for sand and sand-silt 



www.manaraa.com

33 

 

 

bottom sediments, the water was drained and rinsed at least three times between runs to 

remove any residual E. coli. This allowed chlorinated water to clean the system, including 

the bottom sediments, between the runs. For the biofilm experiments, the water was emptied 

once from the tank between each run; however, the biofilm in the flume was not rinsed at 

the same flow rates, so that the biofilm remained intact. The bottom sediments were 

completely removed between each change of bottom sediments type  in the experiments. 

During the removal process the flume was shocked with a chlorine booster pack, power 

powder plus (Leslie’s Swimming Pool Supplies, Phoenix, AZ) and run for a minimum of 6 

hours.  

Experiment Procedure 

Prior to each run, the shear stress was calculated using diameter based equations for 

non-cohesive bottom sediments proposed by Lick (Lick 2009).  Using the calculated shear 

stress, the velocity was back calculated with Manning’s Equation and bed shear stress as 

described previously (Jamieson et al. 2005).  Each set of experiments for each bottom 

sediments were designed to include two or three flows below the critical shear stress and one 

flow above the critical shear stress, all at a water depth ranging between 15cm. For all 

bottom sediments, one experiment was completed at a stream depth of 23 cm with similar 

flow rate as a test under the critical shear stress.  The shear stress values calculated for the 

sand, sand-silt, and biofilm bottom sediments were 2.5E-1, 1.8E-2 and 1.3 N/m
2
, 

respectively. The biofilm shear stress was calculated by averaging the two types of bottom 

sediments due to the shear equations being completely dependent on the mean diameter of 

the sediment. After calculating the shear stress, it was increased by an order of magnitude as 

previously described by El Ganaoui et al (2004). The calculated shear stress was used to set 

the experimental flow rates. The flow rate in which the critical shear stress was surpassed 

was performed last in the experiments.  

An Acoustic Doppler Velocimeter (ADV) (Norteck Inc., Vertrono Cable Probe 

P22596) was used to collect and set the flow in the flume. For setting the flow in the flume, 

the probe was set at location 2 from the inlet and six cm above the bottom of the flume, and 

was averaged over a three minutes sample period. Additionally, a ten point profile was 
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collected in ten intervals from the bottom sediments to the top of the water at 7.32 m from 

the top of the water to the bottom bottom sediments. The ten point profile was used to 

calculate a more accurate flow rate after the initial velocity was set. The velocity was also 

measured at each point where samples were collected to flow-weight the samples.  

Once the water depth and velocity were set, the pump was turned off so that the 

bottom sediments could be inoculated with E. coli.  A sediment sample was collected before 

inoculation test for any E. coli remaining in the sediment from the previous experiment.  

Environmental strains of E. coli were collected and grown in Trypticase Soy broth (Becton, 

Dickinson and Company, Sparks, MD) to the stationary phase of the growth curve, 

approximately 10-14 hours in a 45 
o
C water bath. The E. coli concentrations in the tryptic 

soy broth inoculum ranged between 5.3E10 and 2.4E14 cfu/100mL, resulting in an 

application of 2.65E11 to 1.2E15 cfu being applied to the bottom sediments. The E. coli 

solution was sprayed onto each bottom sediment: For the sand and sand-silt experiments the 

top centimeter of bottom sediments was mixed, but for the biofilm experiments the bottom 

sediments was not mixed or disturbed. After inoculation the flow was increased to the 

specified rate until steady state was reached, approximately ten minutes. The E. coli 

concentration of the water was tested before and after inoculation.  

Data was collected at two locations along the flume, 4.88 m (location 1) and 7.32 m 

(location 2) from the water inlet (Figure 1), every fifteen minutes for one hour. Grab 

samples were also collected at the flume’s inlet, at 0 m, at each time period to determine 

background E. coli concentrations in the inflow. Water collection points were located at 

location 1 and location 2 downstream from the entrance of the flume (Figure 1). At each 

collection point 9 samples were collected in a grid pattern evenly distributed at 0.15 m, 0.30 

m and 0.45 m along the cross section of the flume. Along the depth of the water the 

collection points were evenly distributed along the depth of the flume.   The samples were 

collected using 1.27 cm diameter, and 1.83 m long sterile vinyl tubing and were replaced 

between each experiment. After being placed the tubing was inserted into wire mesh, 1.27 

cm squares, placed on a pine 0.61 m square frame. Before each sampling event the sample 

collection tubes were opened and allowed to flow for thirty seconds to rinse the line of any 

water from the previous sampling event. The tubing was filled using a peristaltic pump and 



www.manaraa.com

35 

 

 

sealed with pinching clamps. Samples were collected for all points at five time intervals at 

0.5 min, 15 min, 30 min, 45 min and 60 min. The samples were collected in sterile 1000 mL 

bottles. The flow weighted values were obtained and averaged for each point concentration 

in order to achieve the averaged concentrations listed. 

 After the runs were completed, all samples were transported on ice to the water 

quality research laboratory on the ISU campus. The samples were filtered using standard 

membrane filtration techniques (APHA. 1998) and a 0.45 micron filter (Millipore, Billerica, 

MA) within 24 hours.  Filters were placed on modified mTEC agar (USEPA 2000) and 

incubated in a water bath for 24 hours at 35 °C. The samples along with the measured flow 

at each collection point were used to compile samples into velocity weighted samples which 

were analyzed for the total concentration of E. coli as well as the concentration associated 

with particles.  The separation technique was developed using procedures described 

previously by McDaniel (2011).  To measure the attached fraction, each sample was shaken 

gently and split into two 100 mL bottles. One set of bottles was shaken at 400 rpm for ten 

minutes in an orbital shaker, while the other set was filtered through an 8 micron filter to 

remove attached particles. The filtered water and the shaken composite samples were 

processed using standard membrane filtration as described above. By measuring the total 

and the unattached concentrations, the attached concentrations were calculated using a mass 

balance approach.  

Bottom sediments samples were collected before and after the inoculation to assess 

the concentration of E. coli in the bottom sediments. Bottom sediments samples were 

analyzed using equal parts of phosphate buffer water (HACH Company, Loveland, 

Colorado) and bottom sediments by mass. The samples were then stirred using magnetic stir 

bars for ten minutes to disperse the E. coli. The supernatant of the slurry was processed by 

membrane filtration techniques.  

All samples were analyzed for turbidity including each point sample, composite 

samples, and background samples using a Hach 2100N Turbidimeter (HACH Company, 

Loveland, Colorado). Samples of suspended particle were analyzed at the second collection 

site.  Using a nine point grid, as shown in Figure 1, and a ten point profile evenly distributed 
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from the top of the water column to the bottom sediments. The profiles were compiled using 

a Laser In Situ Scattering and Transmissometry (LISST) (Sequoia Scientific, Inc., LISST-

100x-Type C) device, which measures between 2.5-500 micrometers. 

Data Analysis  

Critical shear stress was calculated as expressed by Lick (2009).  

                    

Where τc is critical shear stress in units of N/m
2
, d is the diameter in m.  These shear 

stress calculations combined with the bed shear equation by Jamieson (2005), allowed a 

preliminary critical flow rate to be calculated and set for the experiments. 

             (
 

 
)
   

     

Where y is specific weight of water (N/m
3
), S is slope, Q is flow rate (m

3
/s), n is the 

Manning’s roughness coefficient, and A is cross sectional area of flow (m
2
). This flow rate 

was revaluated using the ten point cross-sectional profile for the flume.  

After the attached and unattached percentages were determined, the resuspension 

was calculated from the flow, particle surface area and E. coli concentration in the water. 

The resuspension rate calculation was modified from Jamison et al (2005) by changing the 

parameter representing the average concentration of E. coli. Here, the average value was 

substituted with the difference concentration for the specified area by using mass balance 

(Figure2). 

                 
 

  
     

                 
 

  
     

Where Rac is the calculated attached resuspension rate (cfu/m
2
/s), Ca is the attached 

concentration (cfu/100mL) in the water column, Cao is the attached concentration 

(cfu/100mL) in the water column coming through the inlet at a specific time, Cu is the 
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unattached concentration in the water column (cfu/100mL) at a specific time, Cuo is the 

attached concentration (cfu/100mL) in the water column coming through the inlet Q is the 

measured flow rate (m
3
/s) and SA is the surface area(m

2
). Where the bottom sediments area 

is contributing to resuspension between the two collection location, and 10
6
 is a conversion 

factor. The total resuspension was found by adding the unattached and attached 

resuspension.   

Statistical Analysis System (SAS) software version 9.2 (SAS Institute Inc., Cary, 

NC, USA.) was used to perform a Pearson’s correlation analysis using the proc corr 

procedure to investigate potential relationships between parameters for each bottom 

sediments. Within each bottom sediments and when the water depth was set at 15 cm a 

correlation was completed; it examined relationships between flow, turbidity, location, E. 

coli percent attachment, E. coli unattached resuspension rate, E. coli attached resuspension 

rate, E. coli concentration, and mean particle size. Within each bottom sediments the same 

parameters were also analyzed across the two water depths with the similar flow rates, 

however this comparison included depth as a parameter instead of flow rates.  

Using the proc glm (generalized linear model) procedure in SAS, an analysis of 

variance (ANOVA) and lsmeans with an adjusted Tukey’s pairwise procedure was 

completed to investigate the potential effects between parameters.  When the water depth 

was set at 15 cm, a two way ANOVA was completed for the bottom sediments, flow rate 

and  bottom sediments-flow rate interactions on mean particle size, turbidity, E. coli percent 

attachment, E. coli unattached resuspension rate, E. coli attached resuspension rate and total 

Figure 2 Mass Balance for Calculated Resuspension Equations 
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E. coli resuspension rate. A two way ANOVA was completed for the effects of E. coli 

sediment concentration and bottom sediments impacts on E. coli water background 

concentrations. Another two way ANOVA was completed for the effects of E. coli 

attachment concentration and bottom sediments impacting turbidity. A two way ANOVA 

was completed for the effects of turbidity and bottom sediments impacting total 

resuspension. A two way ANOVA was also completed E. coli water column concentration 

and bottom sediments impacting total resuspension.  

Within each bottom sediments a two way ANOVA and lsmean was completed on 

two water depths with the similar flow rates, using the bottom sediments, water depths and 

bottom sediments-water depth interactions. The tests were completed on the mean particle 

size, turbidity, E. coli percent attachment, E. coli unattached resuspension rate, E. coli 

attached resuspension rate and total E. coli resuspension rate. 

 ANOVA and lsmeans were also completed by dates in order to test for variations of 

parameters in time.  At a singular depth the relationships were examined for E. coli 

unattached concentration, E. coli attached concentration, E. coli unattached resuspension 

rate, E. coli attached resuspension rate and total E. coli resuspension rate.  The calibrated 

resuspension model analysis was completed using the least squares regression line for 

comparing attached and unattached E. coli resuspension. The regression was completed for 

the uncalibrated model in comparison to the calculated resuspension; secondly the 

regression model was completed for the calibrated model in comparison to the calculated 

resuspension. For all statistical tests significance was set at P-value < 0.05.   

Predicting Resuspension  

Similar to Pandey (2012), modified sediment resuspension equations were used to 

predict attached and unattached resuspension for different sediments and flows. The 

following equations were developed by Lick (2009), using experimental data in which 

erosion rate was determined by the erosion rate at the threshold of erosion and shear stress. 

In order to estimate resuspension Pandey (2012) multiplied erosion equations developed by 

Lick by the concentration of attached E. coli in the sediments (Equation 5).  Similarly, 
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Lick’s Equation (6) for smaller than 432 microns to predict resuspension of unattached E. 

coli; Where τb> τcn in order not have negative numbers.  

          (
      

      
)
  

     

          (
  

  
)
  

     

Where Ra is the resuspension rate of attached E. coli (cfu/m
2
/s), Ru is the resuspension rate of 

unattached E. coli (cfu/m
2
/s), Eoa is the erosion rate at the threshold of erosion of attached 

sediment and E. coli (m/s), Eou is the erosion rate at threshold of erosion of unattached  E. 

coli (m/s), τb is the bottom shear stress, τcn is the critical shear stress for non-cohesive 

sediments (N/m
2
), τc is the critical shear stress for cohesive sediments (N/m

2
), Cab is the 

concentration in the sediment of attached E. coli (cfu/m
3
), Cub is the concentrations of 

unattached E. coli in the sediment bed (cfu/m
3
), na is the exponent of attached particles, and 

nu is the exponent of unattached particles.  The exponents, na and nu, were found by lick to 

be approximately equal to two, and is considered a fitting parameter. Critical shear stress for 

cohesive sediments, Eao, is set at10
-6

 m/s to represent the erosion rate at the threshold of 

erosion as described by Lick (2009). Lick calibrated the na exponent to be equal to two for 

small and intermediate particles using field data.  As described previously by Pandey et al. 

(2012) bottom shear stress, τb, is calculated by, 

                

Where ρ is density of water [kg/m
3
], g is gravity (m

2
/s), R is hydraulic radius (m) and 

S is slope. Critical shear stress for cohesive is calculated by 

      (  
       

  
 

  

    
)      

Where a are b coefficients specified by Lick (2009) to be 8.5X10
-16

 m
2
 and 

9.07cm
3
/g, ρb  is bulk density (kg/m

3
). The values of c3 and c5 can be determined by the 

following equations:  
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Table 2 Parameters used to compute the calculated and modeled resuspension rates   

 
Parameter Values Sources 

a coefficient for the effects of particle packing on the critical shear stress tc[m
2
] 8.5x10

-16
 Lick (2009) 

aaSS coefficient for the effects of particle packing on the critical shear stress tc[m
2
] attached  -1.6x10-19 Calibrated 

aaSS2 coefficient for the effects of particle packing on the critical shear stress tc[m
2
] attached  8.5x10

-16
 Lick (2009) 

aaS coefficient for the effects of particle packing on the critical shear stress tc[m
2
] attached  8.5x10

-16
 Lick (2009) 

aaS2 coefficient for the effects of particle packing on the critical shear stress tc[m
2
] attached  8.5x10

-16
 Lick (2009) 

aaBF coefficient for the effects of particle packing on the critical shear stress tc[m
2
] attached  8.5x10

-16
 Lick (2009) 

aaBF2 coefficient for the effects of particle packing on the critical shear stress tc[m
2
] attached  -3.6x10 Calibrated 

au coefficient for the effects of particle packing on the critical shear stress tc [m
2
] unattached 8.5x10

-16
 Lick (2009) 

b coefficient for the effects of particle packing on the critical shear stress tc [m
3
/g] 9.1x10

-3
 Lick (2009) 

baSS coefficient for the effects of particle packing on the critical shear stress tc [m
3
/g] attached 2.5x10

-2
 Calibrated 

baSS2 coefficient for the effects of particle packing on the critical shear stress tc [m
3
/g] attached 2.23x10

-2
 Calibrated 

baS coefficient for the effects of particle packing on the critical shear stress tc [m
3
/g] attached 2.09x10

-2
 Calibrated 

baS2 coefficient for the effects of particle packing on the critical shear stress tc [m
3
/g] attached 2.22x10

-2
 Calibrated 

baBF coefficient for the effects of particle packing on the critical shear stress tc [m
3
/g] attached 2.30x10

-2
 Calibrated 

baBF2 coefficient for the effects of particle packing on the critical shear stress tc [m
3
/g] attached  1.94x10

-2
 Calibrated 

bu coefficient for the effects of particle packing on the critical shear stress tc [m
3
/g] unattached 9.1x10

-3
 Lick (2009) 

c3 prg(s-1)/6, coefficient for the effect of clay on the critical stress tc [N/m
3
] 1.4x10

3
- 2.7x10

3
 Calculated 

c5 coefficient for the effect of clay on the critical stress tc [N/m
2
] 2.08 - 10x10

3
 Calculated 

Ca concentration of E. coli attached to sediment in the water column[cfu/100mL] 0 - 3.8x10
6
 Measured 

Cab concentration of E. coli attached to sediment in the bed [cfu/m
2
] 8.2x10

3
- 1.6x10

8
 Measured 

Cu concentration of E. coli attached to sediment in the water column [cfu/100mL] 3.8x10
4
- 2.9x10

6
 Measured 

Cub concentration of E. coli unattached to sediment in the bed [cfu/m
2
] 4.4x10

1
- 1.3X10

4
 Measured 

d diameter of sediment particles to which E. coli attach [m] 4.4x10
-5

- 6x10
-4

 Manufactures Specifications 

E0 coefficient in the predicted resuspension rate of all sediment particles [m/s] 1x10
-6

 Lick (2009) 

Ea0 coefficient in the predicted resuspension rate of attached particles [m/s] 1x10
-6

 Lick (2009) 

Eu0 erosion rate at the threshold of erosion of unattached particles [m/s] 1x10
1
 Calibrated 

Fb binding force as a function of the particle diameter and specific gravity [N] 8.0x10
-9

-7.5x10
-7

 From Figure in Lick (2009) 
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Table 2 continued 

n exponent in the predicted resuspension rate [-] 2.00 Lick (2009) 

naSS exponent in the predicted resuspension rate attached [-]  7.00 Calibrated 

naSS2 exponent in the predicted resuspension rate attached [-] 2.00 Calibrated 

naS exponent in the predicted resuspension rate attached [-] 2.00 Calibrated 

naS2 exponent in the predicted resuspension rate attached [-] 2.00 Calibrated 

naBF exponent in the predicted resuspension rate attached [-] -11.00 Calibrated 

naBF2 exponent in the predicted resuspension rate attached [-] 2.00 Calibrated 

nuSS exponent in the predicted resuspension rate unattached [-] 2.10 Calibrated 

nuSS2 exponent in the predicted resuspension rate unattached [-] 2.60 Calibrated 

nuS exponent in the predicted resuspension rate unattached [-] 2.20 Calibrated 

nuS2 exponent in the predicted resuspension rate unattached [-] 2.70 Calibrated 

nuBF exponent in the predicted resuspension rate unattached [-] 2.10 Calibrated 

nuBF2 exponent in the predicted resuspension rate unattached [-] 1.70 Calibrated 

Q discharge [m
3
/s] 1.6x10

-3
-1.6x10

-02
 Measured 

R hydraulic radius [m] 0.1 - 0.35 Measured 

Ra predicted attached resuspension rate [cfu/m
2
/s] 3.6x10

-8
-2.8x10

-5
 Calculated 

Rac calculated attached resuspension rate [cfu/m
2
/s] 0-3.9E

-5
 Calculated 

Ru predicted  unattached resuspension rate [cfu/m
2
/s] 1.2x10

-8
- 3.0x10

-4
 Calculated 

Ruc calculated unattached resuspension rate [cfu/m
2
/s] 3.0x10

-5
 - 1.7 x 10

-5
 Calculated 

S slope [-] 0.01 Measured 

SA Surface Area of sediment [m
2
] 3.0 & 1.5 Measured 

rb bulk density of the sediment [kg/m
3
] 1280 - 1520 Measured 

tb bottom shear stress [N/m
2
] 10.2 - 13.2 Calculated 

tc critical shear stress for cohesive sediment [N/m
2
] 0.6x10

4 
- 8.0x10

4
 Calculated 

tcn critical shear stress for non-cohesive sediment [N/m
2
] 0.018 - 0.25 Calculated 

Where subscripts are SS is sand-silt, SS2 is sand-silt at 23 cm, S is sand, S2 is sand at 23 cm, BF is biofilm, and  BF2 is biofilm at 23 cm. 
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Where, Fb is a binding force as a function of the particle diameter and is specified in 

Lick (2009) (N), the value in these equations varied for each bottom sediments . Using these 

equations calculated resuspension rates for E. coli in the particle attached and unattached 

phases were completed. All parameters are shown in Table 2 for each filtted parameter and 

where it was derived. 

Model Sensitivity and Calibration  

Prior and after model calibration a sensitivity analysis was conducted to identify the 

variables most likely to influence the predicted resuspension values and identify model 

sensitivity. To calculate the relative sensitivity Equation 11 (James and Burges 1982; Jesiek 

and Wolfe 2005; Parajuli et al. 2009; White and Chaubey 2005) was used   

   
  

         

         
      

Where Syi is the relative sensitivity index , Pi is ith predicted value, Pb is the baseline 

predicted value, Yi is the ith model input parameter, and Yb is the baseline  value.  The input 

parameters that were analyzed for relative sensitivity were those specified by Lick  as fitting 

parameters found through calibration of his data (2009): aa, au, bu, ba, na, nu, Eoa and Eou. To 

determine the most sensitive parameters for calibration Equation 11 was used. The baseline 

values, minimum and maximum value, and incremental change associated with each input 

parameter are shown in Table 3.  The 

relative sensitivity was used to set lower 

and upper bounds on calibration 

parameters.  Sensitivity index 

classifications according to Zerihun 

(1997), are No sensitivity (N) 0 < |Syi|< 

Table 3 Sensitivity Parameters 

Y Yb Min Max Interval 

a 8.5x10
-16

 (m2) 0.0 1.00E
-15

 1.00E
-16

 

b 9.1x10
-3

 (m3/g) 0.0 1.00E
-02

 1.00E
-03

 

n 2.0 0.0 5.0 0.1 

Eo 1x10
-6

(m/s) 1.00E-06 1.0 1x10
-n

* 

*Denotes change increase in n by one for each interval 
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0.10, Low sensitivity (L) 0.10 <|Syi|< 0.50, Moderate sensitivity (M) 0.50 <|Syi|< 2.0, High 

sensitivity (H) 2.00 < |Syi|< 5.00, Very high sensitivity (VH) |Syi|> 5.00. 

The resuspension equations were modified by calibrating the coefficients specified 

by Lick. The values of ba, and nu were calibrated for the each of the bottom sediments and 

depths of water. The value of Euo, representing erosion rate, was modified for all unattached 

experiments uniformly due to the property being the same for all E. coli cells.  Using the 

sensitivity analysis as a guide of sensitivity the calibrations were completed using Matlab. 

The first parameters calibrated were the least sensitivity aa, au, bu, and Euo. The parameter a, 

was deemed insensitive, it was not considered in the calibration procedure for resuspension. 

Parameters used for the sensitivity analysis were calibrated individually to optimize 

measured and predicted resuspension.  The threshold of erosion, Eo, was held constant for all 

bottom sediments but was set at 1E1 to represent the erosion of single E. coli for Ru 

calculations. When predicting Ra, the ba parameter was optimized for each sediment type. 

Parameters na and nu were optimized for each bottom sediments and water depth. Once the 

calibration was completed the sensitivities for the new parameters were completed. The 

sensitivities were completed by calculating the sensitivity in Equation 11 for aa, au, bu, ba, na, 

nu, Eoa and Eou, by changing the values ±5% and ±20%. This was completed in order to 

measure the sensitivity of the calibrated parameters in the model.  

Results and Discussion 

After the experimental procedures were completed, the raw data was organized and 

checked for quality control. Statistical analysis was completed on the data sets on the effects 

of flow rate and bottom sediments type on various parameters. The background 

concentrations of both the bottom sediments and water column were test and compared. 

Suspended particle sizes and turbidity were analyzed for each experiment. The E. coli 

attachment ratio for both flume segments was computed using a mass balance approach. 

Resuspension was also calculated using the physical mass balance approach for both 

attached and unattached E. coli; however it was completed only between the first and second 

sampling locations. Once the resuspension were calculated the model of sediment 

resuspension was calibrated to model the results in the flume. The calibration of the model 
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was completed by changing various parameters for each bottom sediments and water depth. 

After calibration the sensitivity of the calibrated parameters was calculated.  

E. coli Concentrations in Bottom Sediments and Water  

In order for the experiment to have an accurate mass balance, the background 

concentrations of water and bottom sediments were measured in the experiments. 

Correlations and statistical analysis were completed on each bottom sediments with different 

flows and depths. The bottom sediments concentrations for each experiment were measured 

to test the effect of sediment concentrations on water column concentrations. The water inlet 

E. coli concentrations were measured prior to entering the flume to measure the recirculation 

of E. coli in the flume. The E. coli concentrations were compared to the water column 

concentrations taken at the two collection locations.  

Prior to setting the flow for each experiment, the initial E. coli concentrations in the 

bottom sediments were measured. The initial samples collected before the inoculation was 

measured in order to understand if the rinsing procedures effectively removed E. coli from 

previous experiments from the system. Another background bottom sediments sample was 

collected after the inoculation was completed to compare the before and after effects of the 

inoculation. The average concentrations of the sediment for sand was 2.90E6 (δ=1.59E5) 

cfu/g, for sand-silt was 5.59E5 (δ=8.74E5) cfu/g, and for biofilm was 6.64E3 (δ=1.84E3) 

cfu/g (Figure 3), where δ is 

standard deviation. However, for 

the bottom sediments two orders 

of magnitude difference was 

observed between the sand and 

sand-silt in comparison to the 

biofilm bottom sediments. The 

lower bottom sediments 

concentrations for biofilm were 

due to the differences in the E. 

coli inoculation procedures.  The 

Figure 3 Background concentrations of E. coli 
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E. coli was not mixed into the biofilm layer after inoculation to preserve the biofilm. 

 After steady state had been reached the inlet E. coli concentrations were measured at 

the same time samples were collected (5, 15, 30, 45, and 60 minutes after the start of the 

experiment).  The E. coli concentrations differed between the collection locations as well as 

the time periods. No statistically significance between locations collected at different time 

periods was found (P-value < 0.05). This was expected because the experiments were 

conducted under steady state conditions and were taken as independent points in the 

experiment for each time period. Because of the statistical independence of the samples, for 

analysis, values at each point in time were averaged (Table 2).  Background E. coli 

concentrations in the water column   were collected before the inlet, after the inoculation. 

For sand the background water concentration was 7.17E5 (δ=4.12E5) cfu/100mL, for sand-

silt 4.66E5 (δ=2.49E5) cfu/100mL, and for biofilm 3.53E5 (δ=3.84E5) cfu/100mL (Figure 

3).   

The concentrations in the water column also differed within the bottom sediments 

type and inoculation concentrations.  For sand the average E. coli concentration water 

column were 8.04E5 (δ=4.47E5) cfu/100mL, for sand-silt 5.47E5 (δ=2.15E5) cfu/100mL, 

and for biofilm 5.24E5 (δ=4.04E5) cfu/100mL (Figure 3). For the sand and sand-silt 

experiments correlations were found between flow rate and E. coli concentrations in the 

water column (P-value = 0.0001 and P-value = 0.0002, respectively; Appendix C). The E. 

coli concentrations measured in the water column are  above the single sample maximum 

limit set by the U.S. EPA, 235 cfu/100mL, and are more representative of an urban 

environment contaminated by combined sewer overflow events caused by large storms 

(Passerat et al. 2011). There was an impact of E. coli concentration on the bottom sediments 

on the background water column E. coli concentrations. As shown in Figure 3 the water 

column concentrations and water inlet concentrations are within an order of magnitude 

difference for all bottom sediments. 

The background concentrations collected before the weir at the inlet were unusually 

high for the lowest flow rates in all bottom sediments, in comparison to the water column in 

the flume. The probable cause of the concentration difference is the flow straightener which 
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acted as a weir prior to the inlet of the flume. This could have caused some deposition of 

larger particles and associated E. coli creating a zone of higher concentration behind the 

flow straightener. The weir effect likely removed larger particles and did not affect free 

floating bacteria, as they would not have been removed by the flow straightener. For this 

reason resuspension calculations were based on the second flume segment instead of 

between the inlet and the first collection location. 

Suspended Sediment Sizes and Turbidity of Water Column  

 Turbidity was measured for each water collection point as well as for the composite 

samples. Statistical analysis found effects of flow and sediment type on turbidity in the 

water column (Table 5 and Table 6). A statistically significant difference was observed 

between the turbidity of biofilm compared to the sand and sand-silt (P-value < 0.0001), but 

not between the turbidity of water samples collected from the sand-silt and sand bottom 

sediments (P-value = 0.7168, Table 5). This is likely due to the biofilms cohesive nature, 

which allows sloughing of biofilm causing a much higher turbidity in comparison to the 

sand and sand-silt. Additionally, the in-line weir was potentially less effective in removing 

the suspended biofilm particles than the sand and sand-silt particles, and therefore, more 

particles were recirculated through the system.  

There was also significant correlation of flow rate and turbidity for the biofilm 

experiments (P-value = 0.0001, Appendix C). 

Biofilm was observed to slough off easier 

than the sand and sand-silt particles 

increasing the turbidity of the water. The 

different flow rates for each bottom sediments 

had a statistically significant impact on 

turbidity in the water column (P-value 

<0.001).  Differences were observed between 

the high flow and both the medium and low 

flows; however, there was not a statistically 

significant difference between the medium 

Table 4 Particle Size and Turbidity Statistics 

Bottom 

sediments 

Average 

Particle size 

(µm) 

Average 

Turbidity 

(NTU) 

Biofilm 20.4 a 26.5a 

Sand-Silt 10.7ab 2.7b 

Sand 8.6 b 3.6b 

Flow Rates 
  

High 13.0a 17.5a 

Medium 12.0a 8.2b 

Low 14.7a 7.2b 

Values followed by different letters indicate 

statistical difference according to Tukey's 

pairwise comparison at α= 0.05 



www.manaraa.com

47 

 

 

and low flows on turbidity (P-value = 0.5632). Results of particle size and turbidity 

comparisons are listed in Table 4. The results suggest there was not enough of a difference 

between the low and medium flow rates that were selected below the critical shear stress to 

result in significantly different turbidity concentrations in the water column.  

The interactions of depth on the turbidity were also investigated.  The statistical 

analysis found effects of depth and bottom sediments type on turbidity to be statistically 

significant (P-value <0.0001 and P-value <0.0001, respectively; Table 5) and interactions 

between the two were also statistically significant (P-value <0.0001).  Different bottom 

sediments contained various particles sizes and caused variations in critical shear stresses. 

The changes in critical shear stress would create distinct turbidities within each bottom 

sediment.  For sand-silt and biofilm bottom sediments (but not sand) there was a significant 

correlation between the depth and the observed turbidity. This could be caused by the 

change in shear stress observed due to the increase of hydraulic radius. As shown in 

Equation 7, bed shear stress is dependent on the hydraulic radius of the scenario.  

 Measurements of turbidity were supplemented with analysis of particles sizes taken 

at the second sampling location. Statistical analysis found a statistically significant effect on 

particle sizes (P-value < 0.001) from the different bottom sediments (Table 5), with the 

biofilm having significantly higher average particle sizes in the water column than the sand-

silt and sand bottom sediments. No statistically significant effect was observed between flow 

rate and average particle sizes.  This could be because particles were removed by the weir 

and therefore average particle sizes were affected more by bottom sediments type. The 

average size of particles for the bottom sediments were sand 600 µm, silt 44 µm diameter, 

and biofilm 322 µm. In comparison the average particle sizes in the water column were sand 

8.6 µm, silt 10.7 µm diameters, and biofilm 20.4 µm. The sand had the smallest particles 

sizes suspended this is probably caused by the bottom sediments having the lowest 

concentration of small particles to resuspended. The sand-silt bottom sediments had more 

small particles to resuspend and therefore had a higher size for the average particle size in 

the water column. The biofilm had a completely different size range do to the EPS holding 

particles together causing a much higher particle size to appear. However these particles had 

a lower bulk density due to the organic material.  
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The statistical analysis determined that the mean particle sizes in the water column 

were not impacted by water depth (Table 6). Although there was a change in the hydraulic 

radius which affects the bottom shear stress, it was not a significant change to impact the 

particle sizes measured. Statistical analysis found an impact of bottom sediments on particle 

sizes, which confirms the findings in the single depth experiments, which had similar 

turbidities.  

Statistical analysis also found impacts of attached E. coli concentration on turbidity. 

Attached E. coli concentrations had a significant correlation with turbidity in biofilm (P-

value = 0.014). While the sand and sand-silt bottom sediments did not have a significant 

correlation.  Other researchers have found E. coli is correlated to turbidity during 

resuspension experiments conducted in estuaries and streams (Fries et al. 2008; Muirhead et 

al. 2004). McDaniel’s (2011) experiments were completed in a recirculating flume setting 

with varying flows and measured resuspension using initial deposition of fecal matter from 

bovine species on a rock bed. The experiments found significant correlation between 

attached E. coli concentration and turbidity. However, studies have found weak correlation 

between fecal coliforms and turbidity (Cho et al. 2010; Dorner et al. 2007; Henson et al. 

2007).  

Fraction of Attached and Unattached E. coli 

The bottom sediments were inoculated to increase the amount of E. coli available for 

resuspension, and to better provide insight into the process. The E. coli added to the bottom 

sediments was freely suspended cells, and E. coli which was measured as attached in the 

water column was caused by interactions with particles during the inoculation procedure.  

Attachment ratios in each of the three bottom sediments are shown in Figure 4 A-C for each 

flow rate and depth. The attachment ratios were measured for five time intervals for each 

flow rate. As seen in the Figure 4, the attachment ratios increased as flow increased which 

matches the original principle of increased shear stress causing an increase in resuspension 

of particles and bacterial attachment in the water column. Other studies have found 

correlations between sediment transport and increasing shear stress (Krishnappan 2007; Lick 

et al. 1995; Stone et al. 2008; Witt and Westrich 2003). Resuspension models have also been 

had equations based on the sediment shear stress (Collins and Rutherford 2004).  However, 
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the decrease after the critical shear stress 

point was exceeded was not in originally 

theorized. The decrease of attachment could 

be caused by the superficially attached E. 

coli to be removed due to the high shear 

stress. There could also be particle 

interaction due to higher resuspension of 

particles, which allow physically remove E. 

coli.   

Statistical analysis found impacts on 

percent of E. coli attached to particles, due to 

bottom sediments type, flow rate, and 

interactions between bottom sediments and 

flow (Table 5). Due to the effects of cohesive 

and noncohesive shear stress the percent of 

E. coli attached to particles was expected to 

change with the bottom sediments; the 

statistical analysis found some statistically 

significant differences among the three 

bottom sediments.  The analysis found 

statistically significant differences of 

attachment of E. coli between sand and 

biofilm bottom sediments. There are the two 

extremes in the bottom sediments, caused by 

the organic matter and size particles; 

therefore a difference of attachment was 

expected with the bottom sediments. 

Analysis was also completed on only two 

experiment runs for similar flow rates and 

differ depths of water (Table 6) this set only 

contained two experimental runs in 

Figure 4 Attachment percentages at varying flow 

rates and water depths for A) Sand, B) Sand-Silt, 

and C) Biofilm bottom sedimentss. The critical 

shear stress is identified by the solid vertical line. 

The values at 23 cm water depth are separated 

by a dashed line for comparison to similar flow 

rates. 
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comparison to Table 5 which contained all the flow rates and only one depth. Statistical 

analysis also found an impact of depth and bottom sediments on the attachment ratios (P-

value <0.040, P-value <0.001 respectively). The pairwise comparison found a difference 

between the biofilm and sand-silt attachments. This is unexpected due to the biofilm and 

sand-silt having similar initial particle sizes. However, the biofilm has a significant cohesive 

factor which could have an effect on the attachment ratios.  

As the bottom sediments diameter decreases the cohesiveness increases (Lick et al. 

1995; van Rijn 2007) and biofilm has added cohesiveness due to the presence of EPS 

(Droppo et al. 2007; Krishnappan 2007; Paterson 1989). The highest E. coli attachment to 

particles was found in the water samples collected during the biofilm bottom sediments 

experiments. The average E. coli attachment for the experiments conducted at 15 cm water 

depth and biofilm bottom sediments was 37% (δ=30%). The theory of biofilm having the 

greatest attachment of the three bottom sediments, caused by the high cohesive strength of 

EPS, was proven. Krishnappan found the more sites in sediment occupied with microbial 

growth created lower erosion rates by increasing the cohesion (Krishnappan 2007). Paterson 

found a direct correlation between increased shear stress and the number of diatoms in the 

sediment (Paterson 1989). Droppo in a flume setting was able to grow biofilm and show 

gradual increase of the erosion rate with increased growth (Droppo et al. 2007). The average 

E. coli attachment percentage for the experiments conducted at 15 cm water depth, sand-silt 

bottom sediments was 23% (δ=19 %), and sand bottom sediments was 12% (δ=11%).  The 

E. coli attachment in water samples collected during the sand bottom sediments experiments 

was lower than the E. coli attachment in water samples collected during the sand-silt bottom 

sediments. This is due to the increased cohesive strength of the sand-silt mixture in 

comparison to an all sand mixture (Lick et al. 1995; Redondo et al. 2001; van Rijn 2007).  

Sand attachment was expectedly much lower than the biofilm due to its low organic fraction 

(entirely silica).  The sand and silt used for the experiment were ground from quarts 

classification to appropriate sizes. However, the biofilm bottom sediments were inoculated 

with organic materials in the form of the stream biofilm. The increased organic materials 

allowed more cohesion than in the sand and sand-silt bottom sediments. 

 When the percent E. coli attached was compared between the experiments 

conducted at 15 cm depth and 23 cm depth, the sand decreased by 69% and biofilm 
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decreased by 66% whereas the sand-silt E. coli percent attachment increased by 34%. The 

decrease in attachment supports the initial theory that bottom shear stress increases with the 

increase of flow and causes higher resuspension. Therefore when the depth changes and 

flow rate stays the same, shear stress increases due to the extended hydraulic radius of the 

flume.   The intensified critical shear stress is crossed and attachment decreased for sand and 

biofilm at the 23 cm depth. The sand-silt increase in E. coli attachment was unexpected, as 

the intensified critical shear stress was expected to be crossed.  

Attachment ratios found are comparable to attachment amounts observed in the field. 

Passerat found an attachment of 77% to suspended matter or solids during a combined sewer 

overflow event (Passerat et al. 2011), and the magnitude of attachment was high during wet 

weather conditions than in dry weather conditions.  Krometis (2007) found 40% attachment 

with fecal coliforms, E. coli and entercocci. Krometis looked at different storm events to 

explain the partitioning of attachment in different microorganisms and pathogens.  
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Table 5 Two Way ANOVA for Flow Rate and Sediment Comparisons 

 
Mean Particle Size Turbidity Attachment 

Total 

Resuspension 

Attached 

Resuspension 

Unattached 

Resuspension 

Flow Rate Comparison P-Value P-Value P-Value P-Value P-Value P-Value 

Overall ANOVA 0.0056 0.0010 0.0001 0.0001 0.0001 0.0140 

Flow 0.8945 0.0010 0.0001 0.0001 0.0004 0.0563 

Bottom sediments 0.0064 0.0010 0.0010 0.0009 0.0158 0.0976 

Flow×Bottom sediments 0.0171 0.0010 0.0003 0.0032 0.0004 0.0340 

Pairwise Comparison 

Parameters 
      

High-Low Flow 0.9183 0.0010 0.5875 0.0001 0.0003 0.1046 

High-Medium Flow 0.9714 0.0010 0.0001 0.0015 0.0696 0.0763 

Low-Medium 0.7983 0.5632 0.0008 0.3365 0.0744 0.9981 

BF-SS 0.0647 0.0010 0.2992 0.7684 0.3993 0.9847 

BF-Sand 0.0196 0.0010 0.0006 0.0010 0.0115 0.1528 

SS-Sand 0.8926 0.7168 0.0666 0.0102 0.2361 0.1312 

High-BF - High-SS 0.8979 0.0001 0.9514 0.5868 0.1035 1.0000 

High-BF - High-Sand 0.9996 0.0001 1.0000 0.0721 0.9997 0.0298 

High-SS - High-Sand 0.9969 0.9997 0.9513 0.0003 0.3166 0.0303 

Medium-BF - Medium-SS 0.3192 0.0001 0.0093 0.9874 0.8765 1.0000 

Medium-BF - Medium-Sand 0.1897 0.0001 0.0001 0.9839 0.7833 1.0000 

Medium-SS - Medium-Sand 1.0000 1.0000 0.4242 1.0000 1.0000 1.0000 

Low-BF - Low-SS 0.0585 0.0001 1.0000 0.3856 0.0099 1.0000 

Low-BF - Low-Sand 0.1068 0.0001 0.9880 0.2652 0.0042 1.0000 

Low-SS - Low-Sand 1.0000 0.7992 0.9999 1.0000 1.0000 1.0000 

High-BF - Medium-BF 0.3630 0.0001 0.0001 0.2177 0.0113 1.0000 

High-BF - Low-BF 0.1042 0.0001 0.8769 0.0060 0.0001 1.0000 

Low-BF - Medium-BF 0.9788 0.8719 0.0001 0.4943 0.0265 1.0000 

High-SS - Low-SS 0.7915 0.9943 1.0000 1.0000 0.9999 1.0000 

High-SS - Medium-SS 0.8716 1.0000 0.8538 0.9998 0.9928 1.0000 

Low-SS - Medium-SS 1.0000 0.9943 0.7357 1.0000 1.0000 1.0000 

High-Sand - Medium-Sand 0.9924 0.9930 0.9998 0.0016 0.9123 1.0000 
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Table 5 continued 

High-Sand - Low-Sand 0.9996 0.9240 0.9999 0.0009 0.7915 1.0000 

For this table SS denotes sand-silt bottom sediments, BF denotes for biofilm bottom sediments. The High denotes the highest flow, Medium denotes 

medium flow, and Low denotes the low flow for all bottom sediments. 
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Table 6 Two way ANOVA for Depth and Bottom sediments comparison 

 

Mean Particle 

Size 
Turbidity Attachment 

Total 

Resuspension 

Attached 

Resuspension 

Unattached 

Resuspension 

Depth Comparison P-Value P-Value P-Value P-Value P-Value P-Value 

Overall ANOVA 0.0400 0.0001 0.0001 0.1609 0.5990 0.26 

Depth 0.3330 0.0001 0.0037 0.0465 0.2066 0.20 

Bottom sediments 0.0348 0.0001 0.0001 0.7737 0.5754 0.33 

Depth × Bottom sediments 0.1147 0.0001 0.0001 0.1684 0.6432 0.26 

Pairwise Comparison 

Parameters 
      

BF-SS 0.0267 0.0001 0.2203 0.9515 0.5453 0.50 

BF-Sand 0.3068 0.0001 0.0001 0.9092 0.8620 0.34 

SS-Sand 0.4669 0.0001 0.0002 0.7559 0.8511 0.95 

15 BF - 15 SS 0.1032 0.0001 0.0005 0.8313 0.8696 1.00 

15 BF -15 Sand 0.1279 0.0001 0.0001 0.8995 0.9004 1.00 

15 SS  - 15 Sand 1.0000 0.3203 0.3656 1.0000 1.0000 1.00 

23 BF - 23 SS 0.8683 0.0001 0.2839 0.9688 0.9987 0.48 

23 BF -23 Sand 0.9975 0.0001 0.3766 0.5884 0.9996 0.32 

23 SS - 23 Sand 0.6158 0.0001 0.0019 0.9542 0.9816 1.00 

15 BF - 23 BF 0.3170 0.0001 0.0001 0.0992 0.7039 0.30 

15 SS  - 23 SS 0.9937 0.0001 0.8476 0.9680 0.9790 1.00 

15 Sand - 23 Sand 0.9368 0.0460 0.9327 1.0000 1.0000 1.00 

For this table SS denotes sand-silt bottom sediments, BF denotes for biofilm bottom sediments. The 15 denotes the 15 cm depth of the water column, 

and 23 denotes the 23 cm depth of water column. 
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Despite the changes in pathogen loading rate there was an increase of attachment and 

concentration during the first phase of the storm, similarly to the flume results, where the 

increase in flow rate increases the attachment, sand increased from 10% to 12%, sand-silt 

increased from 13% to 32% and biofilm increased from 21% to 81%.  Characklis (2005) 

also looked at attachment fractions and found 20-35% of the E. coli tested was associated 

with particles during normal flow and up to 30-55% were attached to particles during a 

storm event. Results of the average fraction of E. coli attachment in the sand-silt and 

biofilm, 23% and 37% respectively, were comparable, although none of the compared 

values from Characklis, Passerat, or Krometis, were derived under flume conditions. The E. 

coli attachment to particles during the experiments conducted under the sand bottom 

sediments had lower E. coli attachment fraction was 12%; this outcome was lower than 

previous experiments, likely due to the lack of organic or cohesive matter (Hipsey et al. 

2006; Karunakaran et al. 2011) 

Resuspension of Attached and Unattached E. coli 

 Resuspension values were calculated between the two sampling locations and for 

attached and unattached E. coli using Equations 3 and 4.  Figure 5 shows the attached and 

unattached resuspension rates for the second segment (Figure 1). Negative resuspension 

implies deposition was occurring between the two sampling locations. Statistical analysis 

found flows and bottom sediments had impacts on total E. coli resuspension, attached E. coli 

resuspension, and unattached E. coli resuspension (Table 5). As shown in the Figure 5 the 

resuspension rate increased for attached and unattached E. coli after the critical shear stress 

was surpassed for both sand and biofilm bottom sediments. However, for the sand-silt 

bottom sediments, the unattached E. coli resuspension rate increased whereas the attached E. 

coli resuspension rate decreased. The attached E. coli resuspension rate E. coli was lowest in 

the experiments conducted on the silt-sand bottom sediments. Sand-silt experiments also had 

the only attached E. coli resuspension rate where deposition was observed after the critical 

shear stress was surpassed. Deposition could have been caused by particle interactions 

between the bacteria, sand and silt. More cohesion would be expected in the sand-silt than in 

just the sand. However, due to higher density particles than in biofilm, the sand-silt fraction 

could have resuspended in the first segment and settled in the second segment. 
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In comparison to other studies the 

measured and predicted resuspension rates 

were rather low. Jamieson (2005) calculated 

8200-15,000 cfu/m
2
/s whereas the highest 

resuspension value calculated was 1.09E-4 

cfu/m
2
/s. Pandey (2012) also measured higher 

resuspension rates ranging between 11-167 

cfu/m
2
/s.  The E. coli sediment concentrations 

can also be compared to Jamison’s study 

which ranged from 1.2E5 to 5.5E5
 

cfu/100mL; whereas in the concentrations of 

this study averaged 3.52E07 (δ=6.29E07) 

cfu/100mL for this study. The discrepancy in 

resuspension rates could be caused by flow 

rates and therefore different shear stress. Both 

Jamieson’s and Pandey’s studies were 

completed in the field and enumerated effects 

of resuspension. Jamieson created artificial 

flows after seeding the sediment bed with 

NAR E. coli, whereas Pandey measured E. 

coli concentrations under various natural flow 

conditions Jamieson was using a stream 

measured flow rates from zero to 8.0E-2 m
3
/s 

and Pandey had an average flow rate of 3.6 

m
3
/s. A maximum flow rate of 1.61E-2 m

3
/s, 

was measured for the flume, which could 

possibly explain the low resuspension rates 

relative to the calculated rates observed in the 

field.  

 In Figure 5 shows less unattached 

Figure 5 E. coli resuspension calculated at position 

2 in the attached (unfilled) and unattached (filled) 

phases for A) sand, B) sand-silt, and C) biofilm 

bottom sedimentss.  The vertical dashed line 

shows the flow where the critical shear stress is 

exceeded. Positive values represent resuspension 

and negative values represent deposition. 
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resuspension than expected; more unattached resuspension was expected due to the 

relatively small size of E. coli. This could be caused by the separation method used to 

differentiate the E. coli in the water column. A more intensive method to estimate the total 

amounts of attached and unattached E. coli could have been used such as centrifugation in 

addition to filtration and settling (Liu et al. 2011; Soupir et al. 2008). Due to the small size 

and buoyancy of a single E. coli cell, no deposition should have occurred (Baldwin et al. 

1995; Pachepsky et al. 2006). Equations (4-5) use a mass balance to determine attached and 

unattached resuspension rates. However, if there was little to no difference in concentration 

between the two locations it could have caused deposition and resuspension to be equal. All 

of the resuspension might have occurred after inoculation had been completed and the 

pumps were turned back on before the initial sampling at time zero. The background 

concentration of E. coli in the water column could have remained high due to the lack of 

deposition of unattached E. coli in the recirculating water.  The amount of unattached 

resuspension could also be dampened due to the high concentrations of E. coli in the water 

column, making it difficult to differentiate the background concentration from the flux of 

resuspending E. coli. These factors could help explain the low calculated unattached E. coli 

resuspension. Due to the low attached resuspension measurements the theory of higher 

unattached E. coli resuspension occurring at higher rates than attached E. coli. 

Statistical analysis found flows and bottom sediments impact the total E. coli 

resuspension, attached E. coli resuspension, and unattached E. coli resuspension. The results 

support the initial postulation that flow and bottom sediments would both impact E. coli 

resuspension.  Table 5 lists the statistical results for the flow rate and sediment comparison 

while Table 6 details the effects of bottom sediments and depth on resuspension values. 

Although bottom sediments and flow rate have an effect on unattached E. coli resuspension 

(P-value <0.0140), however flow and bottom sediments separately do not (P-value <0.0563, 

P-value <0.0976 respectively). This difference supports the theory that the unattached E. coli 

resuspension is very low due to the lack of changes in deposition or resuspension. The 

pairwise comparison for high and low flow rates have significant impacts on total E. coli 

resuspension (P-value <0.001). High and medium flow also had a significant effect on total 

E. coli resuspension (P-value <0.015). There was an impact of flow on attached E. coli 

resuspension for all biofilm experiments. The difference was caused by distinct flow rate 



www.manaraa.com

58 

 

 

differences in each run, 1.26E-2 m
3
/s for the low run, 1.46 E-2 m

3
/s for the medium run and 

1.61E-2 m
3
/s for the high run. When comparing the depth differences with similar flow rates 

statistical analysis found no effect of depth and bottom sediments on impact the total E. coli 

resuspension, attached E. coli resuspension, and unattached E. coli resuspension. The results 

of the depth comparison did not support the initial theory of a significant effect of depth on 

E. coli resuspension. However, there was a significant effect on resuspension total, P-value 

<0.046 by depth.  

Model Evaluation  

Modeling resuspension is critical to predict accurately predict water quality.  

Recently, new models have been developed to predict the resuspension process (Hipsey et 

al. 2008; Jamieson et al. 2005; Pandey et al. 2012); however, none have been able to test 

these approaches on data collected from different bottom sediments and controlled flows 

around the critical shear stress. The experiments provide a valuable dataset due to the 

controlled parameters including type of sediment, particle diameter, background E. coli 

concentrations, sediment E. coli concentrations, flow rate, slope, hydraulic radius, and other 

variables. Measured values were used to test a model of E. coli resuspension first proposed 

by Pandey et al. (2012), which were a modification of sediment erosion equations.  

To calibrate the model, the values of Eou, ba, and nu were changed for the 

resuspension equations 5 & 8 originally by Lick (2009) and  are shown in Table 2. Only 

sampling events in which resuspension occurred were fit to the model; the equations were 

not used to predict deposition. The three parameters impacting attached E. coli resuspension 

are na, aa, and ba. For the aa and na values, representing coefficient for the effects of particle 

packing on the critical shear stress and exponent in the predicted resuspension rate attached 

respectively. The original values for aa and na are 8.5x10
-16

 and 2 respectively. The ba values, 

representing coefficient for the effects of particle packing on the critical shear stress, were 

changed individually for each bottom sediment and are listed in Table 7.   The original value 

of ba was 9.1x10
-3

. 

The two calibrated parameters for the unattached E. coli resuspension were Eou, and 

nu.  No adjustment from the values proposed by Lick was required for au or bu, representing 
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coefficient for the effects of particle packing on the critical shear stress and coefficient for 

the effects of particle packing on the critical shear stress respectively. The values of au and 

bu were 8.5x10
-16

 and 9.1x10
-3

 respectively. The values of nu, representing exponent in the 

predicted resuspension rate unattached, were calibrated for each bottom sediments and 

depth. The original Lick values for nu were 2.  The value of Eou, representing erosion rate at 

the threshold of erosion of unattached particles, was changed for all of the unattached 

calculations uniformly across all bottom sediments and depths.  The original value of Eou for 

the model was 1x10
-6

.   The differences in unattached resuspension were more significant 

due to magnitude of differences in particle properties between sediments and bacteria.  

Figure 6a and 6b show the uncalibrated model’s prediction of resuspension 

compared with the calculated resuspension values measured in the flume. The calculated 

average unattached E. coli resuspension rates were 1.32E-6 cfu/m
2
/s for sand, 1.03E-6 

cfu/m
2
/s for sand-silt, and 1.78E-6 cfu/m

2
/s for biofilm. The calculated average attached E. 

coli resuspension rates were 3.84E-6 cfu/m
2
/s for sand, -2.84E-6 cfu/m

2
/s for sand-silt, and -

8.06E-6 cfu/m
2
/s for biofilm. The attached E. coli resuspension for the biofilm and the sand-

silt were negative which indicates that deposition is taking place. This likely occurred 

because of the initial resuspension from the first segment of the flume and deposited in the 

second segment. The uncalibrated predicted unattached resuspension rates were 51.0E-12 

cfu/m
2
/s for sand, 3.30E-12 cfu/m

2
/s for sand-silt, and 2.98E-12 cfu/m

2
/s for biofilm.  The 

uncalibrated predicted average attached E. coli resuspension rates were 5.57E+4 cfu/m
2
/s for 

sand, 5.57E+4 cfu/m
2
/s for sand-silt, and .00581E+4 cfu/m

2
/s for biofilm.  The uncalibrated 

model under predicted the attached E. coli resuspension rates. This is due to the small size of 

the E. coli and cohesion of sediment particles. The uncalibrated model predicted higher 

unattached E. coli resuspension for sand than for the sand-silt and biofilm bottom sediments. 

For the Lick sediment resuspension model, as the particle size decreases the cohesive shear 

stress increases and therefore the particle resuspension decreases. Therefore, the model 

performed as expected for the various bottom sediments, but poorly predicted bacterial 

processes. 
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The model found an overestimate of attached E. coli resuspension in Figure 6a, 

statistical analysis of the regression found an r
2
 value of 0.094. While in Figure 6b an 

underestimate of unattached E. coli resuspension, statistical analysis of the regression found 

an r
2
 value of 0.012. Neither of the comparisons provided a good regression line. The 

overestimate could be caused by differences in sediment transport equations calibration and 

flume sediments. One of the possible issues the C5 value was lower than found by Lick 

(2009), due to the difference in particle diameters. The C5 value calculated by Lick was 21 

in comparison the calculated values of C5 ranged from 2.08-4.13. Another might be the 

different bulk densities of the sediment, and calculated bed shear stresses. For Lick the shear 

stresses ranged from 0-0.8 N/m
2
 in comparison to non-cohesive particles were 0.02-0.25 

Figure 6 E. coli resuspension calculated compared with model output. Solid line indicates perfect 

agreement and faint lines indicate differences by a factor of 2 A) calculated resuspension & model 

calibrated unattached, B) calculated resuspension & model calibrated attached C) calculated 

resuspension & model after calibration unattached d) calculated resuspension & model after 

calibration attached 

A B 

C D 
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N/m
2
, and the bulk density used by Lick was 1.85 g/cm

3
, whereas 1.28-1.52 g/cm

3 
was used 

for the model. Differences in the unattached resuspension calculations could have been 

caused by major changes of particle diameter and bulk density, especially for unattached E. 

coli cells.  

Figure 6 C and D show the predicted E. coli resuspension values after calibration 

compared to the calculated E. coli resuspension values. The calibrated model E. coli 

resuspension values for unattached were sand 1.32E-6 cfu/m
2
/s, sand-silt 1.87E-6 cfu/m

2
/s, 

and biofilm 1.21E-6 cfu/m
2
/s. The calibrated model E. coli resuspension values for attached 

were sand 3.95 E-6 cfu/m
2
/s, sand-silt -2.17E-6 cfu/m

2
/s, and biofilm -5.67E-6 cfu/m

2
/s.  

The statistical analysis of the regression found an r
2
 value of 0.85 for the unattached E. coli 

resuspension model in comparison to the calculated E. coli resuspension values. The 

statistical analysis of the regression found an r
2
 value of 0.91 for the unattached E. coli 

resuspension model in comparison to the calculated E. coli resuspension values. The 

calibrated model for the unattached model gives a lower regression due to the size particle 

difference; however with calibration of the parameters it is possible to model resuspension 

of unattached E. coli. The calibrated values give a wide spread of resuspension values and 

are better calibrated then the original model output.  The calibration performed the best for 

sand-silt and biofilm than for sand. This is related to environmental factors in the original 

model calibration in the original model are better represented by sand-silt and biofilm 

bottom sediments.  

Sensitivity Analysis  

Once calibration was completed a sensitivity analysis was conducted for each 

calibration parameter and is detailed in Table 7. The changes made to aa, and b were 

categorized as no sensitivity as they were all below 0.10. For the unattached resuspension 

major changes were made in the erosion threshold, which made a moderate impact due to all 

the sensitivity indexes being around 1. As shown in Table 7 the highest sensitivity being was 

found due to the change of na and nu. The na was considered to have very high sensitivity 

and was higher at the 5% change from the base than the 20% change. This is due to the 

relative difference caused by such close values of na.  A similar pattern for the sensitivities 

of na were found. However these sensitivities are much higher due to the change in the 
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original value of 2 proposed by Lick’s sediment model. The very high sensitivities are 

expected considering the modification of the model to such a small organism such as E. coli. 

There was also high sensitivity to the erosion factors for both sediment and unattached E. 

coli.  The higher sensitivity rate for unattached is due to the differences caused by much 

smaller unattached particles.  

 

Table 7 Sensitivity Analysis and Indexes 

Baseline Values  % change from Base 

  -20 -5 0 5 20 

aa and au* = 8.50E-16 S index 0.002307 0.006275 -- 0.00758 0.003511 

S index Class N N -- N N 

baSS2 = 2.23E-02 S index 0.005954 0.023815 -- 0.023815 0.005954 

S index Class N N -- N N 

baSand = 2.09E-02 S index 0.005954 0.023815 -- 0.023815 0.005954 

S index Class N N -- N N 

baSand2 = 2.22E-02 S index 0.005954 0.023815 -- 0.023815 0.005954 

S index Class N N -- N N 

baBF 2 = 1.94E-02 S index 0.005954 0.023815 -- 0.023815 0.005954 

S index Class N N -- N N 

na*= 2 S index 3.4522 5.1523 -- 7.0046 11.9142 

S index Class H VH -- VH VH 

nuSS = 2.1E0 S index 99.98 17.84 -- 8.167 3.81 

S index Class VH VH  VH H 

nuSS2 = 2.6E0 S index 2.5103 19.6675 -- 19.9655 4.9997 

S index Class H VH -- VH H 

nuSand = 2.2E0 S index 35.5066 10.8727 -- 18.6587 4.9839 

S index Class VH VH -- VH H 

nuSand2 = 2.7E0 S index 3.7724 19.8588 -- 19.9868 4.9999 

S index Class H VH -- VH H 

nuBF = 2.1 S index 99.98 17.84 -- 8.167 3.81 

S index Class VH VH  VH H 

nuBF2 = 1.7 S index 1326.90 554.8647 -- 110.29 1.4855 

S index Class VH VH -- VH M 

Eoa*= 1.00E-06 S index 1.0026 1.0121 -- 0.98661 0.99617 

S index Class M M -- M M 

Eou*= 1.00E+00 S index 3997444 18987861 -- 20986586 5996168 

S index Class VH VH -- VH VH 

Sensitivity index classifications according to Zerihun (1997), are  No sensitivity N 0 < |Syi|< 0.10, Low 

sensitivity L 0.10 <|Syi|< 0.50, Moderate sensitivity M 0.50 <|Syi|< 2.0, High sensitivity H 2.00 < |Syi|< 

5.00, Very high sensitivity VH |Syi|> 5.00. 

* For all bottom sediments  
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Chapter 4 Conclusion 

The flume resuspension experiments provided new information about the 

interactions between E. coli, water column and sediments. The experiments were completed 

under various flow rates for three bottom sediments. There was also a duplicate run 

completed on similar flow rates with different water depths in order to test the effect of 

water depth on E. coli attachment and resuspension. Unattached and attached resuspension 

under controlled conditions were analyzed. The experimental control achieved in the flume 

allowed us great insight into the impacts of the flow and parameters of the sediments on E. 

coli  resuspension. Critical shear stresses for the various bottom sediments were calculated 

based on average particle diameter. Boundaries for mass balances were established in the 

flume, which allowed us to study attachment and resuspension in close proximity. For 

resuspension a mass balances was completed to determine the attached and unattached E. 

coli resuspension rates. Statistical analysis was completed, using SAS, for the experiments 

to measure the impacts of flow and bottom sediments on various parameters.   

The results found the attachment ratios increased with increased cohesion and a 

decrease in particle sizes. Statistical analysis found bottom sediments and flow rates have an 

impact on attachment percentages. The average percent E. coli attached for the different 

bottom sediments were 37% for biofilm, 23% for sand-silt, and 12% for sand.  These results 

support the increased cohesion of smaller particles and higher EPS encouraged higher 

percentages of attachment. The percent of attached E. coli decreased after the critical shear 

stress was surpassed; sand attachment decreased by 66%, sand-silt increased by 34%, and 

biofilm decreased by 69% over the two sample collection locations. 

 Statistical analysis found flows and bottom sediments impact the total E. coli 

resuspension, attached E. coli resuspension, and unattached E. coli resuspension. The 

resuspension rate increased for attached and unattached E. coli after the critical shear stress 

was surpassed for both sand and biofilm bottom sediments. However for sand-silt there was 

deposition, which could have been caused by resuspension occurring in the first segment of 

the flume and deposited during the second segment.  The calculated unattached E. coli 

resuspension rates were 1.32E-6 cfu/m
2
/s for sand, 1.03E-6 cfu/m

2
/s for sand-silt, and 



www.manaraa.com

64 

 

 

1.78E-6 cfu/m
2
/s for biofilm. The calculated attached E. coli resuspension rates were 3.84E-

6 cfu/m
2
/s for sand, -2.84E-6 cfu/m

2
/s for sand-silt, and -8.06E-6 cfu/m

2
/s for biofilm, where 

negative values indicate deposition.  For the calculated attachment ratios there was 

deposition for both biofilm and sand-silt in the attached E. coli phase. In comparison to other 

studies the measured and predicted resuspension were lower than reported values. The 

discrepancy for the numbers could be caused by the lower flow rate used in comparison to 

values obtained from the field.  

Using the values of calculated resuspension the model for sediment transport was 

calibrated to predict E. coli resuspension. Using the sediment erosion model (Lick 2009) as 

a blueprint for attached E. coli movement the model was calibrated to model unattached E. 

coli.  The statistical analysis of the model comparison found regression values of r
2
 value of 

0.81 for the unattached E. coli resuspension model in comparison to the calculated E. coli 

resuspension values. An r
2
 value of 0.91 was found for the attached E. coli resuspension 

model in comparison to the calculated E. coli resuspension values. The sensitivity of the 

equations for the changed parameters, na, nu, Eou, aa and ba was completed. Low sensitivity 

indexes were found for ba, bu, aa and au and higher sensitivity for nu, na, Eoa and Eou value. 

Changes to the equations not being made for extremely small particles, such as E. coli, 

would expect high sensitivity.  

 

Implications 

The implications of this work are for us to fill the knowledge gap of modeling 

unattached and attached concentrations of E. coli. Jamieson (2004) and Pachepsky (2011), 

have called for a major improvement of resuspension to be studied to improve knowledge on 

the effects of  E. coli transport in water bodies. Work presented in this thesis increases 

understanding of resuspension of E. coli on which further understanding of the mechanics of 

attachment and resuspension can be built. This initial study will allow others to compare and 

to look at different variables to investigate resuspension.   The modification of equations to 

model resuspension shows how different particle sizes can effect resuspension. As more 

sophisticated testing technology is developed it is important that other pathogens or tracer 
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bacteria can be used to identify fecal contamination and we can model the transportation of 

bacteria in streams. This study is a platform on which to translate other pathogen species to 

model and understand the movement of bacteria in streams.  

Future Research 

The results of this study should be used in the future to assist the understanding of 

sediment and pathogen transport within stream environments. Improving understanding of 

transport is critical to predict water quality with models. The equations developed should be 

used to compare resuspension measured in field experiments. These field studies should 

focus on evaluating the impacts not studied in the flume such as unsteady flows and how 

storm hydrographs affect resuspension. There will be a difference in the flows, cohesion and 

environmental parameters which cannot be imitated in a flume setting.  Additional flume 

studies could be completed to supplement the material presented by considering a wider 

variation of bottom sediments and flow rates. Once the parameters are investigated and 

similarly correlated to streams under varying conditions the equations should be included in 

future models to quantify fluxes of pathogens in streams. These models will assist in 

achieving a more ideal understanding of pathogen transport in the stream environment. 

Instead of assuming a constant or ignoring resuspension models should be able to provide 

variables for modeling and therefor understanding E. coli attachment and resuspension rates. 

By increasing the accuracy of models risk of gastrointestinal illness will be better 

understood.  
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Appendix A Raw Data 

Water Background  

Table 1.1-Sediment-Water background for each bottom sediments including amounts of cfu/100 mL before and after 

inoculation 

Date Sediment Average 

Depth of 

water 

4.88m 

(in) 

Depth of 

water 

averaged 

at 7.32m 

(in) 

E. coli 

Average 

in TSB 

(CUF/ 

100ml) 

Sediment 

Before 

(cfu/ 

100ml) 

Sediment 

After 

(cfu/ 

100ml) 

Background  

H2O (cfu/ 

100ml) 

Sediment 

background 

(cfu/ 100ml) 

Sediment 

Moisture 

Before 

(g) 

Sediment  

Moisture  

After (g) 

24 hours 

Sediment 

Moisture 

Before 

(g) 

24 hours 

Sediment  

Moisture  

After (g) 

6/9/2011 BF 5.465 6.29 NA 4.95E+03 N/A N/A NA 9.58 NA 6.443 NA 

6/17/2011 BF 5.75 5.90625 NA 2.67E+03 2.67E+03 2.00E+01 -6.69E+05 1.03E+01 NA 9 NA 

6/23/2011 BF 5.875 6.5 4.33E+11 1.68E+04 N/A 3.94E+02 NA 8.06 NA 6.2 NA 

6/30/2011 BF 8.75 9.25 8.33E+10 3.40E+04 8.27E+03 4.40E+01 -4.71E+05 8.072 10.77 7.287 8.39 

7/6/2011 BF 5.8125 6.5625 7.28E+12 2.35E+02 2.63E+05 1.33E+02 1.32E+05 30.475 23.663 NA NA 

7/13/2011 Sand 6.125 6.8125 5.33E+10 6.67E+01 1.60E+08 0.00E+00 1.59E+08 23.879 26.3 19.6 21.5 

7/22/2011 Sand 6.5625 5.5625 1.92E+12 TMTC 6.64E+06 8.04E+03 6.08E+06 2.10E+01 2.08E+01 16.81 15.99 

7/26/2011 Sand 8.75 8.75 3.77E+12 6.64E+06 1.60E+08 8.04E+03 1.59E+08 1.51E+01 1.53E+01 10.79 12.77 

8/2/2011 Sand 5.625 6.5 2.87E+11 5.69E+05 7.71E+06 1.37E+03 6.30E+06 19.98 20.23 15.9 15.73 

8/6/2011 SS 5.75 6.4375 7.50E+11 NA 1.50E+05 4.73E+02 -4.85E+05 15.19 15 12.82 12.86 

8/23/2011 SS 5.25 6 9.83E+11 2.72E+07 1.76E+07 1.40E+02 1.72E+07 20.9 18.99 17.63 15.93 

8/26/2011 SS 9 9.5 2.44E+14 7.22E+06 1.42E+07 1.33E+04 1.21E+07 20.7 17.35 17.53 15.27 

9/1/2011 SS 5.5 6.25 3.35E+12 7.75E+06 1.60E+08 4.00E+00 1.59E+08 21.57 20.37 19.99 18.45 
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Depth Comparisons for Similar Flow Rates 

Table 2.1 - Used for depth comparisons in SAS –Biofilm A 

Sediment Dates Points Depth (in) Q (m3/s) Time (min) Attachment 

(Fraction) 

E. coli 

(Average) 

(cfu/100 mL) 

E. coli Background 

per time period 

(cfu/100 mL) 

Resuspension U 

(cfu/m2/s) 

BF 6/17/2011 4.88 5.83 1.46E-02 0 0.66 5.45E+05 3.66E+05 0.00E+00 

BF 6/17/2011 4.88 5.83 1.46E-02 15 0.8 5.45E+05 4.08E+05 0.00E+00 

BF 6/17/2011 4.88 5.83 1.46E-02 30 0.96 5.45E+05 1.00E+04 0.00E+00 

BF 6/17/2011 4.88 5.83 1.46E-02 45 0.88 5.45E+05 2.06E+05 0.00E+00 

BF 6/17/2011 4.88 5.83 1.46E-02 60 0.84 5.45E+05 2.92E+05 0.00E+00 

BF 6/17/2011 7.32 5.83 1.46E-02 0 0 7.99E+05 3.66E+05 0.00E+00 

BF 6/17/2011 7.32 5.83 1.46E-02 15 0.89 7.99E+05 4.08E+05 0.00E+00 

BF 6/17/2011 7.32 5.83 1.46E-02 30 0.78 7.99E+05 1.00E+04 1.64E-08 

BF 6/17/2011 7.32 5.83 1.46E-02 45 0.81 7.99E+05 2.06E+05 0.00E+00 

BF 6/17/2011 7.32 5.83 1.46E-02 60 0.8 7.99E+05 2.92E+05 0.00E+00 

BF 6/30/2011 4.88 9 1.45E-02 0 0.19 4.23E+05 2.65E+05 7.24E-06 

BF 6/30/2011 4.88 9 1.45E-02 15 0.41 4.23E+05 2.09E+05 1.66E-06 

BF 6/30/2011 4.88 9 1.45E-02 30 0.31 4.23E+05 2.33E+05 6.19E-06 

BF 6/30/2011 4.88 9 1.45E-02 45 0 4.23E+05 2.51E+05 1.14E-05 

BF 6/30/2011 4.88 9 1.45E-02 60 0 4.23E+05 3.16E+05 6.06E-06 

BF 6/30/2011 7.32 9 1.45E-02 0 0 5.36E+05 2.65E+05 5.51E-05 

BF 6/30/2011 7.32 9 1.45E-02 15 0.6 5.36E+05 2.09E+05 0.00E+00 

BF 6/30/2011 7.32 9 1.45E-02 30 0.16 5.36E+05 2.33E+05 0.00E+00 

BF 6/30/2011 7.32 9 1.45E-02 45 0.63 5.36E+05 2.51E+05 0.00E+00 

BF 6/30/2011 7.32 9 1.45E-02 60 0 5.36E+05 3.16E+05 1.17E-05 
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Table 2.2 - Used for depth comparisons in SAS –Biofilm B 

Sediment Dates Resuspension 

A (cfu/m2/s) 

Total 

Resuspension 

(cfu/m2/s) 

Turbidity 

(NTU) 

LISST, Sizes 

(micrometers) 

E. coli Sediment 

Before Inoculation 

(cfu/100mL) 

E. coli Sediment 

After (cfu/100mL) 

Average Attached 

Composite 

Concentrations (cfu/100ml) 

BF 6/17/2011 4.21E-06 4.21E-06 19.73 NA 2.67E+03 2.67E+03 8.58E+04 

BF 6/17/2011 9.06E-06 9.06E-06 19.73 NA 2.67E+03 2.67E+03 1.85E+05 

BF 6/17/2011 1.08E-05 1.08E-05 19.73 NA 2.67E+03 2.67E+03 2.19E+05 

BF 6/17/2011 4.59E-06 4.59E-06 19.73 NA 2.67E+03 2.67E+03 9.37E+04 

BF 6/17/2011 3.96E-06 3.96E-06 19.73 NA 2.67E+03 2.67E+03 8.07E+04 

BF 6/17/2011 -8.42E-06 -8.42E-06 18.95 46.32 2.67E+03 2.67E+03 0.00E+00 

BF 6/17/2011 -1.50E-05 -1.50E-05 18.95 46.32 2.67E+03 2.67E+03 3.15E+04 

BF 6/17/2011 -1.79E-05 -1.79E-05 18.95 46.32 2.67E+03 2.67E+03 3.63E+04 

BF 6/17/2011 -6.15E-06 -6.15E-06 18.95 46.32 2.67E+03 2.67E+03 3.10E+04 

BF 6/17/2011 -4.11E-06 -4.11E-06 18.95 46.32 2.67E+03 2.67E+03 3.88E+04 

BF 6/30/2011 4.73E-06 1.20E-05 29.58 NA 3.40E+04 8.27E+03 9.67E+04 

BF 6/30/2011 8.15E-06 9.81E-06 29.58 NA 3.40E+04 8.27E+03 1.67E+05 

BF 6/30/2011 7.99E-06 1.42E-05 29.58 NA 3.40E+04 8.27E+03 1.63E+05 

BF 6/30/2011 0.00E+00 1.14E-05 29.58 NA 3.40E+04 8.27E+03 0.00E+00 

BF 6/30/2011 0.00E+00 6.06E-06 29.58 NA 3.40E+04 8.27E+03 0.00E+00 

BF 6/30/2011 -9.46E-06 4.56E-05 25.11 21.53 3.40E+04 8.27E+03 0.00E+00 

BF 6/30/2011 5.87E-06 5.87E-06 25.11 21.53 3.40E+04 8.27E+03 2.27E+05 

BF 6/30/2011 -1.04E-05 -1.04E-05 25.11 21.53 3.40E+04 8.27E+03 5.67E+04 

BF 6/30/2011 3.00E-05 3.00E-05 25.11 21.53 3.40E+04 8.27E+03 1.67E+05 

BF 6/30/2011 0.00E+00 1.17E-05 25.11 21.53 3.40E+04 8.27E+03 0.00E+00 
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Table 2.3 - Used for depth comparisons in SAS –Biofilm C 

Sediment Dates Log 

(Average 

Attached) 

Turbidity per 

time Composites 

(NTU) 

E. coli 

for time periods 

(cfu/100 mL) 

Log 

(E. coli) 

Depth 

2 (cm) 

Average unattached 

Composite Concentrations 

(cfu/100ml) 

Log (Average 

unattached) 

H20 Background 

(cfu/100mL) 

BF 6/17/2011 4.93E+00 18.5 6.08E+05 5.78 15.2 44000 4.64 2.00E+01 

BF 6/17/2011 5.27E+00 17.6 4.52E+05 5.66 15.2 45500 4.66 2.00E+01 

BF 6/17/2011 5.34E+00 17.9 5.18E+05 5.71 15.2 9833 3.99 2.00E+01 

BF 6/17/2011 4.97E+00 15.5 5.73E+05 5.76 15.2 13167 4.12 2.00E+01 

BF 6/17/2011 4.91E+00 18.5 5.72E+05 5.76 15.2 15333 4.19 2.00E+01 

BF 6/17/2011 0.00E+00 21.7 9.62E+05 5.98 15.2 13500 4.13 2.00E+01 

BF 6/17/2011 4.50E+00 18.9 7.69E+05 5.89 15.2 3833 3.58 2.00E+01 

BF 6/17/2011 4.56E+00 18.2 7.94E+05 5.9 15.2 10000 4 2.00E+01 

BF 6/17/2011 4.49E+00 20.1 7.82E+05 5.89 15.2 7167 3.86 2.00E+01 

BF 6/17/2011 4.59E+00 21.4 1.15E+06 6.06 15.2 9500 3.98 2.00E+01 

BF 6/30/2011 4.99E+00 32.5 5.71E+05 5.76 22.9 413333 5.62 4.40E+01 

BF 6/30/2011 5.22E+00 30.6 5.32E+05 5.73 22.9 243333 5.39 4.40E+01 

BF 6/30/2011 5.21E+00 32.1 5.67E+05 5.75 22.9 360000 5.56 4.40E+01 

BF 6/30/2011 0.00E+00 31.4 6.18E+05 5.79 22.9 483333 5.68 4.40E+01 

BF 6/30/2011 0.00E+00 27.8 5.90E+05 5.77 22.9 440000 5.64 4.40E+01 

BF 6/30/2011 0.00E+00 32.5 7.54E+05 5.88 22.9 976667 5.99 4.40E+01 

BF 6/30/2011 5.36E+00 30.6 7.50E+05 5.88 22.9 150000 5.18 4.40E+01 

BF 6/30/2011 4.75E+00 32.1 7.52E+05 5.88 22.9 306667 5.49 4.40E+01 

BF 6/30/2011 5.22E+00 31.4 7.43E+05 5.87 22.9 96667 4.99 4.40E+01 

BF 6/30/2011 0.00E+00 27.8 9.01E+05 5.95 22.9 560000 5.75 4.40E+01 
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Table 3.1 - Used for depth comparisons in SAS –Sand A 

Sediment Dates Points Depth (in) Q (m3/s) Time (min) Attachment 

(Fraction) 

E. coli 

(Average) 

(cfu/100 mL) 

E. coli Background 

per time period 

(cfu/100 mL) 

Resuspension U 

(cfu/m2/s) 

Sand 7/13/2011 4.88 6.47 4.45E-03 0 0.16 5.12E+05 5.30E+05 0.00E+00 

Sand 7/13/2011 4.88 6.47 4.45E-03 15 0.34 5.12E+05 4.71E+05 0.00E+00 

Sand 7/13/2011 4.88 6.47 4.45E-03 30 0.05 5.12E+05 4.62E+05 0.00E+00 

Sand 7/13/2011 4.88 6.47 4.45E-03 45 0.07 5.12E+05 5.36E+05 0.00E+00 

Sand 7/13/2011 4.88 6.47 4.45E-03 60 0.13 5.12E+05 4.65E+05 0.00E+00 

Sand 7/13/2011 7.32 6.47 4.45E-03 0 0.24 3.71E+05 5.30E+05 0.00E+00 

Sand 7/13/2011 7.32 6.47 4.45E-03 15 0.1 3.71E+05 4.71E+05 1.95E-07 

Sand 7/13/2011 7.32 6.47 4.45E-03 30 0.08 3.71E+05 4.62E+05 1.25E-07 

Sand 7/13/2011 7.32 6.47 4.45E-03 45 0.09 3.71E+05 5.36E+05 0.00E+00 

Sand 7/13/2011 7.32 6.47 4.45E-03 60 0.1 3.71E+05 4.65E+05 1.54E-06 

Sand 7/26/2011 4.88 8.75 4.56E-03 0 0.16 3.54E+05 3.71E+05 0.00E+00 

Sand 7/26/2011 4.88 8.75 4.56E-03 15 0 3.54E+05 3.51E+05 5.11E-09 

Sand 7/26/2011 4.88 8.75 4.56E-03 30 0.15 3.54E+05 3.66E+05 0.00E+00 

Sand 7/26/2011 4.88 8.75 4.56E-03 45 0 3.54E+05 4.37E+05 0.00E+00 

Sand 7/26/2011 4.88 8.75 4.56E-03 60 0 3.54E+05 4.14E+05 0.00E+00 

Sand 7/26/2011 7.32 8.75 4.56E-03 0 0 3.61E+05 3.71E+05 1.66E-06 

Sand 7/26/2011 7.32 8.75 4.56E-03 15 0 3.61E+05 3.51E+05 0.00E+00 

Sand 7/26/2011 7.32 8.75 4.56E-03 30 0 3.61E+05 3.66E+05 0.00E+00 

Sand 7/26/2011 7.32 8.75 4.56E-03 45 0.12 3.61E+05 4.37E+05 0.00E+00 

Sand 7/26/2011 7.32 8.75 4.56E-03 60 0.03 3.61E+05 4.14E+05 0.00E+00 
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Table 3.2 - Used for depth comparisons in SAS –Sand B 

Sediment Dates Resuspension 

A (cfu/m2/s) 

Total 

Resuspension 

(cfu/m2/s) 

Turbidity 

(NTU) 

LISST, Sizes 

(micrometers) 

E. coli Sediment 

Before Inoculation 

(cfu/100mL) 

E. coli Sediment 

After 

(cfu/100mL) 

Average Attached 

Composite Concentrations 

(cfu/100ml) 

Sand 7/13/2011 1.18E-06 1.18E-06 6.13 NA 6.77E+01 1.60E+08 7.90E+04 

Sand 7/13/2011 2.69E-06 2.69E-06 6.13 NA 6.77E+01 1.60E+08 1.80E+05 

Sand 7/13/2011 3.12E-07 3.12E-07 6.13 NA 6.77E+01 1.60E+08 2.08E+04 

Sand 7/13/2011 4.29E-07 4.29E-07 6.13 NA 6.77E+01 1.60E+08 2.87E+04 

Sand 7/13/2011 9.53E-07 9.53E-07 6.13 NA 6.77E+01 1.60E+08 6.37E+04 

Sand 7/13/2011 1.05E-06 1.05E-06 4.95 15.81 6.67E+01 1.60E+08 1.14E+05 

Sand 7/13/2011 -4.22E-06 -4.02E-06 4.95 15.81 6.67E+01 1.60E+08 3.88E+04 

Sand 7/13/2011 5.34E-07 6.59E-07 4.95 15.81 6.67E+01 1.60E+08 3.87E+04 

Sand 7/13/2011 1.95E-07 1.95E-07 4.95 15.81 6.67E+01 1.60E+08 3.52E+04 

Sand 7/13/2011 -3.99E-07 1.14E-06 4.95 15.81 6.67E+01 1.60E+08 5.03E+04 

Sand 7/26/2011 9.55E-07 9.55E-07 2.17 NA 6.64E+06 1.60E+08 6.23E+04 

Sand 7/26/2011 1.53E-08 2.04E-08 2.17 NA 6.64E+06 1.60E+08 1.00E+03 

Sand 7/26/2011 1.01E-06 1.01E-06 2.17 NA 6.64E+06 1.60E+08 6.60E+04 

Sand 7/26/2011 -3.86E-07 -3.86E-07 2.17 NA 6.64E+06 1.60E+08 0.00E+00 

Sand 7/26/2011 -1.47E-06 -1.47E-06 2.17 NA 6.64E+06 1.60E+08 0.00E+00 

Sand 7/26/2011 0.00E+00 1.66E-06 2.26 26.94 6.64E+06 1.60E+08 0.00E+00 

Sand 7/26/2011 0.00E+00 0.00E+00 2.26 26.94 6.64E+06 1.60E+08 0.00E+00 

Sand 7/26/2011 0.00E+00 0.00E+00 2.26 26.94 6.64E+06 1.60E+08 0.00E+00 

Sand 7/26/2011 1.53E-06 1.53E-06 2.26 26.94 6.64E+06 1.60E+08 5.00E+04 

Sand 7/26/2011 3.27E-07 3.27E-07 2.26 26.94 6.64E+06 1.60E+08 1.07E+04 
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Table 3.3 - Used for depth comparisons in SAS –Sand C 

Sediment Dates Log 

(Average 

Attached) 

Turbidity per time 

Composites 

(NTU) 

E. coli 

for time 

periods 

(cfu/100 mL) 

Log 

(E. coli) 

Depth 2 

(cm) 

Average unattached 

Composite 

Concentrations 

(cfu/100ml) 

Log (Average 

unattached) 

H20 Background 

(cfu/100mL) 

Sand 7/13/2011 4.90E+00 4.48 5.05E+05 5.7 15.2 412333 5.62 0.00E+00 

Sand 7/13/2011 5.25E+00 4.9 5.33E+05 5.73 15.2 355000 5.55 0.00E+00 

Sand 7/13/2011 4.32E+00 5.92 5.08E+05 5.71 15.2 422167 5.63 0.00E+00 

Sand 7/13/2011 4.46E+00 4.26 5.14E+05 5.71 15.2 401833 5.6 0.00E+00 

Sand 7/13/2011 4.80E+00 4.57 4.99E+05 5.7 15.2 419667 5.62 0.00E+00 

Sand 7/13/2011 5.06E+00 4.75 3.93E+05 5.59 15.2 359333 5.56 0.00E+00 

Sand 7/13/2011 4.59E+00 5.01 3.76E+05 5.57 15.2 361500 5.56 0.00E+00 

Sand 7/13/2011 4.59E+00 4.32 3.77E+05 5.58 15.2 426333 5.63 0.00E+00 

Sand 7/13/2011 4.55E+00 5.36 3.59E+05 5.55 15.2 368333 5.57 0.00E+00 

Sand 7/13/2011 4.70E+00 3.73 3.53E+05 5.55 15.2 471000 5.67 0.00E+00 

Sand 7/26/2011 4.79E+00 3.23 3.54E+05 5.55 22.9 325333 5.51 8.04E+03 

Sand 7/26/2011 3.00E+00 2.87 4.13E+05 5.62 22.9 351333 5.55 8.04E+03 

Sand 7/26/2011 4.82E+00 2.93 3.28E+05 5.52 22.9 361333 5.56 8.04E+03 

Sand 7/26/2011 0.00E+00 2.63 3.10E+05 5.49 22.9 387000 5.59 8.04E+03 

Sand 7/26/2011 0.00E+00 2.7 3.62E+05 5.56 22.9 378000 5.58 8.04E+03 

Sand 7/26/2011 0.00E+00 2.66 3.37E+05 5.53 22.9 379333 5.58 8.04E+03 

Sand 7/26/2011 0.00E+00 2.47 3.68E+05 5.57 22.9 345333 5.54 8.04E+03 

Sand 7/26/2011 0.00E+00 2.48 3.52E+05 5.55 22.9 318333 5.5 8.04E+03 

Sand 7/26/2011 4.70E+00 2.3 3.35E+05 5.52 22.9 380000 5.58 8.04E+03 

Sand 7/26/2011 4.03E+00 2.48 3.71E+05 5.57 22.9 362000 5.56 8.04E+03 
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Table 4.1 - Used for depth comparisons in SAS –Sand-Silt A 

Sediment Dates Points Depth Q Time Attachment 

(fraction) 

E. coli  

(cfu/100 mL) (average  

For all time Periods) 

E. coli Background 

In water per 

time period 

Resuspension 

U 

SS 8/23/2011 4.88 5.625 2.45E-03 0 0 3.63E+05 1.00E+04 2.74E-07 

SS 8/23/2011 4.88 5.625 2.45E-03 15 0.46087 3.63E+05 4.40E+05 0.00E+00 

SS 8/23/2011 4.88 5.625 2.45E-03 30 0.669173 3.63E+05 4.53E+05 0.00E+00 

SS 8/23/2011 4.88 5.625 2.45E-03 45 0.370861 3.63E+05 4.97E+05 0.00E+00 

SS 8/23/2011 4.88 5.625 2.45E-03 60 0.279762 3.63E+05 4.57E+05 0.00E+00 

SS 8/23/2011 7.32 5.625 2.45E-03 0 0.333333 3.96E+05 1.00E+04 3.84E-07 

SS 8/23/2011 7.32 5.625 2.45E-03 15 0.16 3.96E+05 4.40E+05 2.36E-06 

SS 8/23/2011 7.32 5.625 2.45E-03 30 0.708772 3.96E+05 4.53E+05 2.14E-06 

SS 8/23/2011 7.32 5.625 2.45E-03 45 0 3.96E+05 4.97E+05 1.15E-06 

SS 8/23/2011 7.32 5.625 2.45E-03 60 0.218487 3.96E+05 4.57E+05 0.00E+00 

SS 8/26/2011 4.88 9.25 3.14E-03 0 0.582192 1.47E+06 1.04E+06 1.93E-06 

SS 8/26/2011 4.88 9.25 3.14E-03 15 0.469388 1.47E+06 8.40E+05 2.11E-06 

SS 8/26/2011 4.88 9.25 3.14E-03 30 0.093137 1.47E+06 8.53E+05 1.05E-05 

SS 8/26/2011 4.88 9.25 3.14E-03 45 0.40873 1.47E+06 1.71E+06 0.00E+00 

SS 8/26/2011 4.88 9.25 3.14E-03 60 0.473077 1.47E+06 1.83E+06 0.00E+00 

SS 8/26/2011 7.32 9.25 3.14E-03 0 0.06875 2.68E+06 1.04E+06 5.70E-06 

SS 8/26/2011 7.32 9.25 3.14E-03 15 0.372549 2.68E+06 8.40E+05 5.06E-06 

SS 8/26/2011 7.32 9.25 3.14E-03 30 0.743304 2.68E+06 8.53E+05 0.00E+00 

SS 8/26/2011 7.32 9.25 3.14E-03 45 0.75 2.68E+06 1.71E+06 0.00E+00 

SS 8/26/2011 7.32 9.25 3.14E-03 60 0.337209 2.68E+06 1.83E+06 0.00E+00 
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Table 4.2 - Used for depth comparisons in SAS –Sand-Silt B 

Sediment Dates Resuspension A 

(cfu/m2/s) 

Total 

Resuspension 

(cfu/m2/s) 

Turbidity 

(NTU) 

LISST, Sizes 

(micrometers) 

E. coli Sediment 

Before Inoculation 

(cfu/100mL) 

E. coli Sediment 

After 

(cfu/100mL) 

Average Attached 

Composite Concentrations 

(cfu/100ml) 

SS 8/23/2011 -1.37E-07 1.37E-07 1.25 NA 2.72E+07 1.76E+07 0.00E+00 

SS 8/23/2011 1.45E-06 1.45E-06 1.25 NA 2.72E+07 1.76E+07 1.77E+05 

SS 8/23/2011 2.44E-06 2.44E-06 1.25 NA 2.72E+07 1.76E+07 2.97E+05 

SS 8/23/2011 1.54E-06 1.54E-06 1.25 NA 2.72E+07 1.76E+07 1.87E+05 

SS 8/23/2011 1.29E-06 1.29E-06 1.25 NA 2.72E+07 1.76E+07 1.57E+05 

SS 8/23/2011 8.23E-07 1.21E-06 1.06 14.64 2.72E+07 1.76E+07 3.33E+04 

SS 8/23/2011 -1.81E-06 5.48E-07 1.06 14.64 2.72E+07 1.76E+07 6.67E+04 

SS 8/23/2011 6.20E-06 8.34E-06 1.06 14.64 2.72E+07 1.76E+07 6.73E+05 

SS 8/23/2011 -3.18E-06 -2.03E-06 1.06 14.64 2.72E+07 1.76E+07 0.00E+00 

SS 8/23/2011 -1.15E-06 -1.15E-06 1.06 14.64 2.72E+07 1.76E+07 8.67E+04 

SS 8/26/2011 1.79E-05 1.99E-05 2.27 NA 7.22E+06 1.42E+07 1.70E+06 

SS 8/26/2011 9.70E-06 1.18E-05 2.27 NA 7.22E+06 1.42E+07 9.20E+05 

SS 8/26/2011 2.00E-06 1.25E-05 2.27 NA 7.22E+06 1.42E+07 1.90E+05 

SS 8/26/2011 1.09E-05 1.09E-05 2.27 NA 7.22E+06 1.42E+07 1.03E+06 

SS 8/26/2011 1.30E-05 1.30E-05 2.27 NA 7.22E+06 1.42E+07 1.23E+06 

SS 8/26/2011 -2.34E-05 -1.77E-05 1.37 8.06 7.22E+06 1.42E+07 1.10E+05 

SS 8/26/2011 -5.91E-06 -8.44E-07 1.37 8.06 7.22E+06 1.42E+07 7.60E+05 

SS 8/26/2011 3.12E-05 3.12E-05 1.37 8.06 7.22E+06 1.42E+07 3.33E+06 

SS 8/26/2011 4.90E-05 4.90E-05 1.37 8.06 7.22E+06 1.42E+07 3.81E+06 

SS 8/26/2011 -1.67E-05 -1.67E-05 1.37 8.06 7.22E+06 1.42E+07 5.80E+05 
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Table 4.3 - Used for depth comparisons in SAS –Sand-Silt C 

Sediment Dates Log (Average 

Attached) 

Turbidity per 

time Composites 

(NTU) 

E. coli 

for time periods 

(cfu/100 mL) 

Log 

(E. coli) 

Depth 2 (cm) Average unattached 

Composite 

Concentrations 

(cfu/100ml) 

Log (Average 

unattached) 

H20 

Background 

(cfu/100mL) 

SS 8/23/2011 0.00E+00 3.16 1.81E+04 4.26 15.2 43333 4.64 1.40E+02 

SS 8/23/2011 5.25E+00 3.16 4.21E+05 5.62 15.2 206667 5.32 1.40E+02 

SS 8/23/2011 5.47E+00 3.95 4.92E+05 5.69 15.2 146667 5.17 1.40E+02 

SS 8/23/2011 5.27E+00 4.13 4.08E+05 5.61 15.2 316667 5.5 1.40E+02 

SS 8/23/2011 5.19E+00 4.42 4.76E+05 5.68 15.2 403333 5.61 1.40E+02 

SS 8/23/2011 4.52E+00 2.25 4.09E+04 4.61 15.2 66667 4.82 1.40E+02 

SS 8/23/2011 4.82E+00 2.17 4.76E+05 5.68 15.2 350000 5.54 1.40E+02 

SS 8/23/2011 5.83E+00 2.62 4.62E+05 5.66 15.2 276667 5.44 1.40E+02 

SS 8/23/2011 0.00E+00 3.58 5.19E+05 5.71 15.2 386667 5.59 1.40E+02 

SS 8/23/2011 4.94E+00 3.65 4.83E+05 5.68 15.2 310000 5.49 1.40E+02 

SS 8/26/2011 6.23E+00 8.04 1.42E+06 6.15 22.9 1220000 6.09 1.33E+04 

SS 8/26/2011 5.96E+00 6.38 1.31E+06 6.12 22.9 1040000 6.02 1.33E+04 

SS 8/26/2011 5.28E+00 13.7 1.64E+06 6.22 22.9 1850000 6.27 1.33E+04 

SS 8/26/2011 6.01E+00 8.66 1.39E+06 6.14 22.9 1490000 6.17 1.33E+04 

SS 8/26/2011 6.09E+00 14.7 1.60E+06 6.21 22.9 1370000 6.14 1.33E+04 

SS 8/26/2011 5.04E+00 8.72 2.69E+06 6.43 22.9 1490000 6.17 1.33E+04 

SS 8/26/2011 5.88E+00 10.4 2.56E+06 6.41 22.9 1280000 6.11 1.33E+04 

SS 8/26/2011 6.52E+00 9 2.39E+06 6.38 22.9 1150000 6.06 1.33E+04 

SS 8/26/2011 6.58E+00 8.55 3.10E+06 6.49 22.9 1270000 6.1 1.33E+04 

SS 8/26/2011 5.76E+00 10.7 2.68E+06 6.43 22.9 1140000 6.06 1.33E+04 
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Flow and Bottom sediments Comparisons of Single Depths  

Table 5.1- Used for comparisons in SAS –Biofilm A 

Sediment Dates Points Depth (in) Q (m3/s) Time (min) Attachment 

(Fraction) 

E. coli 

(cfu/100 mL) 

(time Periods) 

E. coli Background 

In water per 

time period 

Resuspension U 

(cfu/m2/s) 

BF 6/9/2011 4.88 5.88 1.42E-02 0 0.38 1.92E+05 7.80E+04 2.80E-06 

BF 6/9/2011 4.88 5.88 1.42E-02 15 0.51 1.92E+05 4.40E+04 3.57E-06 

BF 6/9/2011 4.88 5.88 1.42E-02 30 0.56 1.92E+05 5.10E+04 2.52E-06 

BF 6/9/2011 4.88 5.88 1.42E-02 45 0.52 1.92E+05 5.70E+04 2.32E-06 

BF 6/9/2011 4.88 5.88 1.42E-02 60 0.76 1.92E+05 7.40E+04 0.00E+00 

BF 6/9/2011 7.32 5.88 1.42E-02 0 0.47 1.86E+05 7.80E+04 0.00E+00 

BF 6/9/2011 7.32 5.88 1.42E-02 15 0.11 1.86E+05 4.40E+04 1.87E-06 

BF 6/9/2011 7.32 5.88 1.42E-02 30 0.42 1.86E+05 5.10E+04 1.36E-06 

BF 6/9/2011 7.32 5.88 1.42E-02 45 0.28 1.86E+05 5.70E+04 1.71E-06 

BF 6/9/2011 7.32 5.88 1.42E-02 60 0.35 1.86E+05 7.40E+04 5.88E-06 

BF 6/17/2011 4.88 5.83 1.46E-02 0 0.66 5.45E+05 3.66E+05 0.00E+00 

BF 6/17/2011 4.88 5.83 1.46E-02 15 0.8 5.45E+05 4.08E+05 0.00E+00 

BF 6/17/2011 4.88 5.83 1.46E-02 30 0.96 5.45E+05 1.00E+04 0.00E+00 

BF 6/17/2011 4.88 5.83 1.46E-02 45 0.88 5.45E+05 2.06E+05 0.00E+00 

BF 6/17/2011 4.88 5.83 1.46E-02 60 0.84 5.45E+05 2.92E+05 0.00E+00 

BF 6/17/2011 7.32 5.83 1.46E-02 0 0 7.99E+05 3.66E+05 0.00E+00 

BF 6/17/2011 7.32 5.83 1.46E-02 15 0.89 7.99E+05 4.08E+05 0.00E+00 

BF 6/17/2011 7.32 5.83 1.46E-02 30 0.78 7.99E+05 1.00E+04 1.64E-08 

BF 6/17/2011 7.32 5.83 1.46E-02 45 0.81 7.99E+05 2.06E+05 0.00E+00 

BF 6/17/2011 7.32 5.83 1.46E-02 60 0.8 7.99E+05 2.92E+05 0.00E+00 

BF 6/23/2011 4.88 6.19 1.26E-02 0 0.24 1.00E+06 1.05E+06 0.00E+00 

BF 6/23/2011 4.88 6.19 1.26E-02 15 0.14 1.00E+06 8.40E+05 4.76E-06 

BF 6/23/2011 4.88 6.19 1.26E-02 30 0.57 1.00E+06 7.93E+05 0.00E+00 

BF 6/23/2011 4.88 6.19 1.26E-02 45 0.35 1.00E+06 1.03E+06 0.00E+00 
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Table 5.1 Continued 

BF 6/23/2011 4.88 6.19 1.26E-02 60 0.44 1.00E+06 1.16E+06 0.00E+00 

BF 6/23/2011 7.32 6.19 1.26E-02 0 0 1.11E+06 1.05E+06 0.00E+00 

BF 6/23/2011 7.32 6.19 1.26E-02 15 0.2 1.11E+06 8.40E+05 0.00E+00 

BF 6/23/2011 7.32 6.19 1.26E-02 30 0 1.11E+06 7.93E+05 1.58E-05 

BF 6/23/2011 7.32 6.19 1.26E-02 45 0 1.11E+06 1.03E+06 4.38E-07 

BF 6/23/2011 7.32 6.19 1.26E-02 60 0.21 1.11E+06 1.16E+06 0.00E+00 

BF 7/6/2011 4.88 6.19 1.61E-02 0 0.33 1.37E+05 1.12E+05 0.00E+00 

BF 7/6/2011 4.88 6.19 1.61E-02 15 0.13 1.37E+05 1.39E+05 0.00E+00 

BF 7/6/2011 4.88 6.19 1.61E-02 30 0.2 1.37E+05 1.08E+05 1.26E-07 

BF 7/6/2011 4.88 6.19 1.61E-02 45 0 1.37E+05 1.10E+05 1.22E-05 

BF 7/6/2011 4.88 6.19 1.61E-02 60 0.08 1.37E+05 1.29E+05 0.00E+00 

BF 7/6/2011 7.32 6.19 1.61E-02 0 0.04 1.25E+05 1.12E+05 4.34E-06 

BF 7/6/2011 7.32 6.19 1.61E-02 15 0 1.25E+05 1.39E+05 1.80E-07 

BF 7/6/2011 7.32 6.19 1.61E-02 30 0 1.25E+05 1.08E+05 3.31E-06 

BF 7/6/2011 7.32 6.19 1.61E-02 45 0 1.25E+05 1.10E+05 0.00E+00 

BF 7/6/2011 7.32 6.19 1.61E-02 60 0.16 1.25E+05 1.29E+05 7.20E-07 
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Table 5.2 - Used for comparisons in SAS –Biofilm B 

Sediment Dates Resuspension A 

(cfu/m2/s) 

Total Resuspension 

(cfu/m2/s) 

Turbidity 

(NTU) 

LISST, Sizes 

(micro) 

E. coli Sediment 

Before (cfu) 

E. coli Sediment 

After (cfu) 

Average Attached 

Composite Concentrations 

(cfu/100ml) 

BF 6/9/2011 4.03E-06 6.83E-06 11.33 NA 4.95E+03 0 8.42E+04 

BF 6/9/2011 5.92E-06 9.49E-06 11.33 NA 4.95E+03 0 1.24E+05 

BF 6/9/2011 6.31E-06 8.83E-06 11.33 NA 4.95E+03 0 1.32E+05 

BF 6/9/2011 5.39E-06 7.70E-06 11.33 NA 4.95E+03 0 1.13E+05 

BF 6/9/2011 1.04E-05 1.04E-05 11.33 NA 4.95E+03 0 2.17E+05 

BF 6/9/2011 1.37E-06 1.37E-06 14.20 46.32 4.95E+03 0 9.85E+04 

BF 6/9/2011 -1.02E-05 -8.29E-06 14.20 46.32 4.95E+03 0 1.77E+04 

BF 6/9/2011 -4.55E-06 -3.19E-06 14.20 46.32 4.95E+03 0 8.42E+04 

BF 6/9/2011 -6.21E-06 -4.50E-06 14.20 46.32 4.95E+03 0 4.77E+04 

BF 6/9/2011 -1.42E-05 -8.31E-06 14.20 46.32 4.95E+03 0 6.92E+04 

BF 6/17/2011 4.21E-06 4.21E-06 19.73 NA 2.67E+03 2.67E+03 8.58E+04 

BF 6/17/2011 9.06E-06 9.06E-06 19.73 NA 2.67E+03 2.67E+03 1.85E+05 

BF 6/17/2011 1.08E-05 1.08E-05 19.73 NA 2.67E+03 2.67E+03 2.19E+05 

BF 6/17/2011 4.59E-06 4.59E-06 19.73 NA 2.67E+03 2.67E+03 9.37E+04 

BF 6/17/2011 3.96E-06 3.96E-06 19.73 NA 2.67E+03 2.67E+03 8.07E+04 

BF 6/17/2011 -8.42E-06 -8.42E-06 18.95 46.32 2.67E+03 2.67E+03 0.00E+00 

BF 6/17/2011 -1.50E-05 -1.50E-05 18.95 46.32 2.67E+03 2.67E+03 3.15E+04 

BF 6/17/2011 -1.79E-05 -1.79E-05 18.95 46.32 2.67E+03 2.67E+03 3.63E+04 

BF 6/17/2011 -6.15E-06 -6.15E-06 18.95 46.32 2.67E+03 2.67E+03 3.10E+04 

BF 6/17/2011 -4.11E-06 -4.11E-06 18.95 46.32 2.67E+03 2.67E+03 3.88E+04 

BF 6/23/2011 1.14E-05 1.14E-05 14.22 NA 1.68E+04 0 2.70E+05 

BF 6/23/2011 6.74E-06 1.15E-05 14.22 NA 1.68E+04 0 1.59E+05 

BF 6/23/2011 3.22E-05 3.22E-05 14.22 NA 1.68E+04 0 7.61E+05 

BF 6/23/2011 1.67E-05 1.67E-05 14.22 NA 1.68E+04 0 3.95E+05 

BF 6/23/2011 1.98E-05 1.98E-05 14.22 NA 1.68E+04 0 4.66E+05 
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Table 5.2 Continued 

BF 6/23/2011 -2.29E-05 -2.29E-05 14.50 60.5 1.68E+04 0 0.00E+00 

BF 6/23/2011 4.24E-08 4.24E-08 14.50 60.5 1.68E+04 0 1.60E+05 

BF 6/23/2011 -6.45E-05 -4.87E-05 14.50 60.5 1.68E+04 0 0.00E+00 

BF 6/23/2011 -3.34E-05 -3.30E-05 14.50 60.5 1.68E+04 0 0.00E+00 

BF 6/23/2011 -2.87E-05 -2.87E-05 14.50 60.5 1.68E+04 0 1.28E+05 

BF 7/6/2011 2.79E-06 2.79E-06 51.32 NA 2.35E+02 2.63E+05 5.17E+04 

BF 7/6/2011 9.00E-07 9.00E-07 51.32 NA 2.35E+02 2.63E+05 1.67E+04 

BF 7/6/2011 1.50E-06 1.63E-06 51.32 NA 2.35E+02 2.63E+05 2.78E+04 

BF 7/6/2011 0.00E+00 1.22E-05 51.32 NA 2.35E+02 2.63E+05 0.00E+00 

BF 7/6/2011 5.13E-07 5.13E-07 51.32 NA 2.35E+02 2.63E+05 9.50E+03 

BF 7/6/2011 1.06E-05 1.50E-05 39.80 15.65 2.35E+02 2.63E+05 5.83E+03 

BF 7/6/2011 3.09E-06 3.27E-06 39.80 15.65 2.35E+02 2.63E+05 0.00E+00 

BF 7/6/2011 1.22E-05 1.55E-05 39.80 15.65 2.35E+02 2.63E+05 0.00E+00 

BF 7/6/2011 3.36E-05 3.36E-05 39.80 15.65 2.35E+02 2.63E+05 0.00E+00 

BF 7/6/2011 1.42E-05 1.49E-05 39.80 15.65 2.35E+02 2.63E+05 2.32E+04 
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Table 5.3- Used for comparisons in SAS –Biofilm C 

Sediment Dates Log( Average 

Attached 

Composites) 

Turbidity per 

Time 

Composites 

E. coli 

For each time  

period 

(cfu/100 

mL) 

Log 

(E. coli) 

Depth 2 (cm) Average unattached 

Composite 

Concentrations 

(cfu/100ml) 

Log(Average 

unattached) 

H20 

Background 

(cfu/100mL) 

BF 6/9/2011 4.93E+00 15.2 1.86E+05 5.27 15.2 136500 5.14 NA 

BF 6/9/2011 5.09E+00 16.7 1.73E+05 5.24 15.2 118500 5.07 NA 

BF 6/9/2011 5.12E+00 13.2 2.14E+05 5.33 15.2 103667 5.02 NA 

BF 6/9/2011 5.05E+00 11.9 1.94E+05 5.29 15.2 105333 5.02 NA 

BF 6/9/2011 5.34E+00 15.8 2.06E+05 5.31 15.2 68333 4.83 NA 

BF 6/9/2011 4.99E+00 18.5 1.75E+05 5.24 15.2 110667 5.04 NA 

BF 6/9/2011 4.25E+00 16.4 1.92E+05 5.28 15.2 138000 5.14 NA 

BF 6/9/2011 4.93E+00 17.4 1.82E+05 5.26 15.2 117833 5.07 NA 

BF 6/9/2011 4.68E+00 18.5 2.07E+05 5.32 15.2 123167 5.09 NA 

BF 6/9/2011 4.84E+00 18.6 1.73E+05 5.24 15.2 129667 5.11 NA 

BF 6/17/2011 4.93E+00 18.5 6.08E+05 5.78 15.2 44000 4.64 2.00E+01 

BF 6/17/2011 5.27E+00 17.6 4.52E+05 5.66 15.2 45500 4.66 2.00E+01 

BF 6/17/2011 5.34E+00 17.9 5.18E+05 5.71 15.2 9833 3.99 2.00E+01 

BF 6/17/2011 4.97E+00 15.5 5.73E+05 5.76 15.2 13167 4.12 2.00E+01 

BF 6/17/2011 4.91E+00 18.5 5.72E+05 5.76 15.2 15333 4.19 2.00E+01 

BF 6/17/2011 0.00E+00 21.7 9.62E+05 5.98 15.2 13500 4.13 2.00E+01 

BF 6/17/2011 4.50E+00 18.9 7.69E+05 5.89 15.2 3833 3.58 2.00E+01 

BF 6/17/2011 4.56E+00 18.2 7.94E+05 5.9 15.2 10000 4 2.00E+01 

BF 6/17/2011 4.49E+00 20.1 7.82E+05 5.89 15.2 7167 3.86 2.00E+01 

BF 6/17/2011 4.59E+00 21.4 1.15E+06 6.06 15.2 9500 3.98 2.00E+01 

BF 6/23/2011 5.43E+00 15.5 1.07E+06 6.03 15.2 872667 5.94 3.94E+02 

BF 6/23/2011 5.20E+00 16.2 1.04E+06 6.02 15.2 952333 5.98 3.94E+02 

BF 6/23/2011 5.88E+00 15.4 9.29E+05 5.97 15.2 575333 5.76 3.94E+02 

BF 6/23/2011 5.60E+00 14.3 1.03E+06 6.01 15.2 741500 5.87 3.94E+02 
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Table 5.3 Continued 

BF 6/23/2011 5.67E+00 13 9.37E+05 5.97 15.2 592000 5.77 3.94E+02 

BF 6/23/2011 0.00E+00 14.7 1.18E+06 6.07 15.2 706000 5.85 3.94E+02 

BF 6/23/2011 5.20E+00 15.3 1.05E+06 6.02 15.2 637333 5.8 3.94E+02 

BF 6/23/2011 0.00E+00 15.2 1.02E+06 6.01 15.2 761333 5.88 3.94E+02 

BF 6/23/2011 0.00E+00 16.7 1.15E+06 6.06 15.2 746667 5.87 3.94E+02 

BF 6/23/2011 5.11E+00 14.8 1.17E+06 6.07 15.2 472500 5.67 3.94E+02 

BF 7/6/2011 4.71E+00 64.7 1.33E+05 5.12 15.2 104000 5.02 1.33E+02 

BF 7/6/2011 4.22E+00 54.8 1.17E+05 5.07 15.2 109333 5.04 1.33E+02 

BF 7/6/2011 4.44E+00 52.1 1.61E+05 5.21 15.2 109833 5.04 1.33E+02 

BF 7/6/2011 0.00E+00 56.1 1.38E+05 5.14 15.2 336167 5.53 1.33E+02 

BF 7/6/2011 3.98E+00 55.7 1.35E+05 5.13 15.2 110833 5.04 1.33E+02 

BF 7/6/2011 3.77E+00 48.7 1.26E+05 5.1 15.2 144167 5.16 1.33E+02 

BF 7/6/2011 0.00E+00 40.4 1.23E+05 5.09 15.2 111000 5.05 1.33E+02 

BF 7/6/2011 0.00E+00 41.6 1.19E+05 5.08 15.2 140500 5.15 1.33E+02 

BF 7/6/2011 0.00E+00 36.3 1.35E+05 5.13 15.2 158667 5.2 1.33E+02 

BF 7/6/2011 4.36E+00 19.1 1.23E+05 5.09 15.2 117500 5.07 1.33E+02 
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Table 6.1- Used for comparisons in SAS –Sand A 

Sediment Dates Points Depth (in) Q 

(m3/s) 

Time 

(min) 

Attachment 

(Fraction) 

E. coli 

(cfu/100 mL) 

(Averaged for 

time periods) 

E. coli Background 

In water per time 

period 

Resuspension U 

(cfu/m2/s) 

Resuspension A 

(cfu/m2/s) 

Sand 7/13/2011 4.88 6.47 4.45E-03 0 0.16 5.12E+05 5.30E+05 0.00E+00 1.18E-06 

Sand 7/13/2011 4.88 6.47 4.45E-03 15 0.34 5.12E+05 4.71E+05 0.00E+00 2.69E-06 

Sand 7/13/2011 4.88 6.47 4.45E-03 30 0.05 5.12E+05 4.62E+05 0.00E+00 3.12E-07 

Sand 7/13/2011 4.88 6.47 4.45E-03 45 0.07 5.12E+05 5.36E+05 0.00E+00 4.29E-07 

Sand 7/13/2011 4.88 6.47 4.45E-03 60 0.13 5.12E+05 4.65E+05 0.00E+00 9.53E-07 

Sand 7/13/2011 7.32 6.47 4.45E-03 0 0.24 3.71E+05 5.30E+05 0.00E+00 1.05E-06 

Sand 7/13/2011 7.32 6.47 4.45E-03 15 0.1 3.71E+05 4.71E+05 1.95E-07 -4.22E-06 

Sand 7/13/2011 7.32 6.47 4.45E-03 30 0.08 3.71E+05 4.62E+05 1.25E-07 5.34E-07 

Sand 7/13/2011 7.32 6.47 4.45E-03 45 0.09 3.71E+05 5.36E+05 0.00E+00 1.95E-07 

Sand 7/13/2011 7.32 6.47 4.45E-03 60 0.1 3.71E+05 4.65E+05 1.54E-06 -3.99E-07 

Sand 7/22/2011 4.88 6.06 5.09E-03 0 0.12 5.42E+05 3.87E+05 0.00E+00 7.98E-07 

Sand 7/22/2011 4.88 6.06 5.09E-03 15 0.01 5.42E+05 4.01E+05 1.14E-07 4.56E-08 

Sand 7/22/2011 4.88 6.06 5.09E-03 30 0.08 5.42E+05 3.49E+05 2.85E-07 5.64E-07 

Sand 7/22/2011 4.88 6.06 5.09E-03 45 0.28 5.42E+05 3.66E+05 0.00E+00 2.23E-06 

Sand 7/22/2011 4.88 6.06 5.09E-03 60 0.05 5.42E+05 3.81E+05 0.00E+00 2.91E-07 

Sand 7/22/2011 7.32 6.06 5.09E-03 0 0.39 5.77E+05 3.87E+05 0.00E+00 5.86E-06 

Sand 7/22/2011 7.32 6.06 5.09E-03 15 0.22 5.77E+05 4.01E+05 0.00E+00 3.55E-06 

Sand 7/22/2011 7.32 6.06 5.09E-03 30 0.11 5.77E+05 3.49E+05 0.00E+00 4.45E-07 

Sand 7/22/2011 7.32 6.06 5.09E-03 45 0.03 5.77E+05 3.66E+05 1.47E-06 -4.12E-06 

Sand 7/22/2011 7.32 6.06 5.09E-03 60 0.11 5.77E+05 3.81E+05 4.79E-07 9.69E-07 

Sand 8/2/2011 4.88 6.06 1.04E-02 0 0 1.43E+06 1.14E+06 9.80E-06 -2.45E-06 

Sand 8/2/2011 4.88 6.06 1.04E-02 15 0.05 1.43E+06 1.37E+06 0.00E+00 2.10E-06 

Sand 8/2/2011 4.88 6.06 1.04E-02 30 0 1.43E+06 1.24E+06 2.87E-05 0.00E+00 

Sand 8/2/2011 4.88 6.06 1.04E-02 45 0.07 1.43E+06 1.38E+06 0.00E+00 2.57E-06 

Sand 8/2/2011 4.88 6.06 1.04E-02 60 0.26 1.43E+06 1.27E+06 1.17E-07 1.55E-05 
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Table 6.1 

Sand 8/2/2011 7.32 6.06 1.04E-02 0 0 1.39E+06 1.14E+06 1.04E-04 4.90E-06 

Sand 8/2/2011 7.32 6.06 1.04E-02 15 0 1.39E+06 1.37E+06 9.01E-05 -4.20E-06 

Sand 8/2/2011 7.32 6.06 1.04E-02 30 0.05 1.39E+06 1.24E+06 0.00E+00 4.27E-05 

Sand 8/2/2011 7.32 6.06 1.04E-02 45 0.28 1.39E+06 1.38E+06 0.00E+00 1.96E-05 

Sand 8/2/2011 7.32 6.06 1.04E-02 60 0.23 1.39E+06 1.27E+06 0.00E+00 -9.34E-06 
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Table 6.2 - Used for comparisons in SAS –Sand B 

Sediment Dates Total 

Resuspension 

(cfu/m2/s) 

Turbidity (NTU) LISST, Sizes 

(micro) 

E. coli Sediment 

Before (cfu/100mL) 

E. coli Sediment 

After 

(cfu/100mL) 

Average Attached 

Composite Concentrations 

(cfu/100mL) 

Sand 7/13/2011 1.18E-06 6.13 NA 6.77E+01 1.60E+08 7.90E+04 

Sand 7/13/2011 2.69E-06 6.13 NA 6.77E+01 1.60E+08 1.80E+05 

Sand 7/13/2011 3.12E-07 6.13 NA 6.77E+01 1.60E+08 2.08E+04 

Sand 7/13/2011 4.29E-07 6.13 NA 6.77E+01 1.60E+08 2.87E+04 

Sand 7/13/2011 9.53E-07 6.13 NA 6.77E+01 1.60E+08 6.37E+04 

Sand 7/13/2011 1.05E-06 4.95 15.81 6.67E+01 1.60E+08 1.14E+05 

Sand 7/13/2011 -4.02E-06 4.95 15.81 6.67E+01 1.60E+08 3.88E+04 

Sand 7/13/2011 6.59E-07 4.95 15.81 6.67E+01 1.60E+08 3.87E+04 

Sand 7/13/2011 1.95E-07 4.95 15.81 6.67E+01 1.60E+08 3.52E+04 

Sand 7/13/2011 1.14E-06 4.95 15.81 6.67E+01 1.60E+08 5.03E+04 

Sand 7/22/2011 7.98E-07 3.31 NA 0 6.64E+06 4.67E+04 

Sand 7/22/2011 1.60E-07 3.31 NA 0 6.64E+06 2.67E+03 

Sand 7/22/2011 8.49E-07 3.31 NA 0 6.64E+06 3.30E+04 

Sand 7/22/2011 2.23E-06 3.31 NA 0 6.64E+06 1.30E+05 

Sand 7/22/2011 2.91E-07 3.31 NA 0 6.64E+06 1.70E+04 

Sand 7/22/2011 5.86E-06 3.38 11.02 0 6.64E+06 2.18E+05 

Sand 7/22/2011 3.55E-06 3.38 11.02 0 6.64E+06 1.06E+05 

Sand 7/22/2011 4.45E-07 3.38 11.02 0 6.64E+06 4.60E+04 

Sand 7/22/2011 -2.64E-06 3.38 11.02 0 6.64E+06 1.00E+04 

Sand 7/22/2011 1.45E-06 3.38 11.02 0 6.64E+06 4.53E+04 

Sand 8/2/2011 7.35E-06 1.83 NA 5.69E+05 7.71E+06 0.00E+00 

Sand 8/2/2011 2.10E-06 1.83 NA 5.69E+05 7.71E+06 6.00E+04 

Sand 8/2/2011 2.87E-05 1.83 NA 5.69E+05 7.71E+06 0.00E+00 

Sand 8/2/2011 2.57E-06 1.83 NA 5.69E+05 7.71E+06 7.33E+04 

Sand 8/2/2011 1.56E-05 1.83 NA 5.69E+05 7.71E+06 4.43E+05 
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Table 6.2 Continued 

Sand 8/2/2011 1.09E-04 2.00 24.98 5.69E+05 7.71E+06 0.00E+00 

Sand 8/2/2011 8.59E-05 2.00 24.98 5.69E+05 7.71E+06 0.00E+00 

Sand 8/2/2011 4.27E-05 2.00 24.98 5.69E+05 7.71E+06 6.33E+04 

Sand 8/2/2011 1.96E-05 2.00 24.98 5.69E+05 7.71E+06 3.53E+05 

Sand 8/2/2011 -9.34E-06 2.00 24.98 5.69E+05 7.71E+06 3.10E+05 
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Table 6.3 - Used for comparisons in SAS –Sand C 

Sediment Dates Log 

(Average 

Attached 

Composites) 

Turbidity per 

Time 

Composites 

E. coli For 

each time 

(cfu/100 mL) 

Log 

(E. coli) 

Depth 

2 (cm) 

Average unattached 

Composite 

Concentrations 

(cfu/100ml) 

Log( Average 

unattached) 

H20 Background 

(cfu/100mL) 

Sand 7/13/2011 4.90E+00 4.48 5.05E+05 5.7 15.2 412333 5.62 0.00E+00 

Sand 7/13/2011 5.25E+00 4.9 5.33E+05 5.73 15.2 355000 5.55 0.00E+00 

Sand 7/13/2011 4.32E+00 5.92 5.08E+05 5.71 15.2 422167 5.63 0.00E+00 

Sand 7/13/2011 4.46E+00 4.26 5.14E+05 5.71 15.2 401833 5.6 0.00E+00 

Sand 7/13/2011 4.80E+00 4.57 4.99E+05 5.7 15.2 419667 5.62 0.00E+00 

Sand 7/13/2011 5.06E+00 4.75 3.93E+05 5.59 15.2 359333 5.56 0.00E+00 

Sand 7/13/2011 4.59E+00 5.01 3.76E+05 5.57 15.2 361500 5.56 0.00E+00 

Sand 7/13/2011 4.59E+00 4.32 3.77E+05 5.58 15.2 426333 5.63 0.00E+00 

Sand 7/13/2011 4.55E+00 5.36 3.59E+05 5.55 15.2 368333 5.57 0.00E+00 

Sand 7/13/2011 4.70E+00 3.73 3.53E+05 5.55 15.2 471000 5.67 0.00E+00 

Sand 7/22/2011 4.67E+00 2.34 5.58E+05 5.75 15.2 352667 5.55 8.04E+03 

Sand 7/22/2011 3.43E+00 4.4 5.61E+05 5.75 15.2 407667 5.61 8.04E+03 

Sand 7/22/2011 4.52E+00 4.11 5.18E+05 5.71 15.2 365667 5.56 8.04E+03 

Sand 7/22/2011 5.12E+00 3.95 4.91E+05 5.69 15.2 331000 5.52 8.04E+03 

Sand 7/22/2011 4.23E+00 4.16 5.61E+05 5.75 15.2 357000 5.55 8.04E+03 

Sand 7/22/2011 5.34E+00 3.8 5.49E+05 5.74 15.2 345333 5.54 8.04E+03 

Sand 7/22/2011 5.03E+00 3.86 5.70E+05 5.76 15.2 381000 5.58 8.04E+03 

Sand 7/22/2011 4.66E+00 4.28 5.58E+05 5.75 15.2 364000 5.56 8.04E+03 

Sand 7/22/2011 4.00E+00 3.99 5.99E+05 5.78 15.2 374000 5.57 8.04E+03 

Sand 7/22/2011 4.66E+00 4.26 5.76E+05 5.76 15.2 371000 5.57 8.04E+03 

Sand 8/2/2011 0.00E+00 2.13 1.48E+06 6.17 15.2 1420000 6.15 1.37E+03 

Sand 8/2/2011 4.78E+00 1.97 1.49E+06 6.17 15.2 1143333 6.06 1.37E+03 

Sand 8/2/2011 0.00E+00 1.74 1.47E+06 6.17 15.2 2060000 6.31 1.37E+03 

Sand 8/2/2011 4.87E+00 1.96 1.36E+06 6.13 15.2 930000 5.97 1.37E+03 

Sand 8/2/2011 5.65E+00 2.28 1.35E+06 6.13 15.2 1273333 6.1 1.37E+03 
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Table 6.3 Continued 

Sand 8/2/2011 0.00E+00 2.36 1.39E+06 6.14 15.2 2910000 6.46 1.37E+03 

Sand 8/2/2011 0.00E+00 2.39 1.48E+06 6.17 15.2 2430000 6.39 1.37E+03 

Sand 8/2/2011 4.80E+00 2.28 1.33E+06 6.12 15.2 1196667 6.08 1.37E+03 

Sand 8/2/2011 5.55E+00 2.72 1.45E+06 6.16 15.2 896667 5.95 1.37E+03 

Sand 8/2/2011 5.49E+00 2.29 1.37E+06 6.14 15.2 1013333 6.01 1.37E+03 
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Table 7.1 - Used for comparisons in SAS –Sand-Silt A 

Sediment Dates Points Depth 

(in) 

Q 

(m3/s) 

Time 

(min) 

Attachment 

(Fraction) 

E. coli 

(Average) 

(cfu/100 mL) 

E. coli Background 

In water per time 

period 

Resuspension U 

(cfu/m2/s) 

Resuspension A 

(cfu/m2/s) 

SS 8/6/2011 4.88 6.09 1.56E-03 0 0.46 6.56E+05 5.27E+05 2.45E-07 2.60E-06 

SS 8/6/2011 4.88 6.09 1.56E-03 15 0.29 6.56E+05 7.23E+05 5.24E-07 1.80E-06 

SS 8/6/2011 4.88 6.09 1.56E-03 30 0.09 6.56E+05 3.50E+05 3.29E-06 5.07E-07 

SS 8/6/2011 4.88 6.09 1.56E-03 45 0.27 6.56E+05 7.17E+05 1.40E-06 1.92E-06 

SS 8/6/2011 4.88 6.09 1.56E-03 60 0.04 6.56E+05 1.14E+06 0.00E+00 2.45E-07 

SS 8/6/2011 7.32 6.09 1.56E-03 0 0.22 6.13E+05 5.27E+05 4.54E-07 -3.43E-06 

SS 8/6/2011 7.32 6.09 1.56E-03 15 0.34 6.13E+05 7.23E+05 0.00E+00 -5.24E-07 

SS 8/6/2011 7.32 6.09 1.56E-03 30 0.06 6.13E+05 3.50E+05 0.00E+00 -4.54E-07 

SS 8/6/2011 7.32 6.09 1.56E-03 45 0 6.13E+05 7.17E+05 0.00E+00 -7.97E-06 

SS 8/6/2011 7.32 6.09 1.56E-03 60 0 6.13E+05 1.14E+06 0.00E+00 -1.12E-06 

SS 8/23/2011 4.88 5.63 2.45E-03 0 0 3.63E+05 1.00E+04 2.74E-07 -1.37E-07 

SS 8/23/2011 4.88 5.63 2.45E-03 15 0.46 3.63E+05 4.40E+05 0.00E+00 1.45E-06 

SS 8/23/2011 4.88 5.63 2.45E-03 30 0.67 3.63E+05 4.53E+05 0.00E+00 2.44E-06 

SS 8/23/2011 4.88 5.63 2.45E-03 45 0.37 3.63E+05 4.97E+05 0.00E+00 1.54E-06 

SS 8/23/2011 4.88 5.63 2.45E-03 60 0.28 3.63E+05 4.57E+05 0.00E+00 1.29E-06 

SS 8/23/2011 7.32 5.63 2.45E-03 0 0.33 3.96E+05 1.00E+04 3.84E-07 8.23E-07 

SS 8/23/2011 7.32 5.63 2.45E-03 15 0.16 3.96E+05 4.40E+05 2.36E-06 -1.81E-06 

SS 8/23/2011 7.32 5.63 2.45E-03 30 0.71 3.96E+05 4.53E+05 2.14E-06 6.20E-06 

SS 8/23/2011 7.32 5.63 2.45E-03 45 0 3.96E+05 4.97E+05 1.15E-06 -3.18E-06 

SS 8/23/2011 7.32 5.63 2.45E-03 60 0.22 3.96E+05 4.57E+05 0.00E+00 -1.15E-06 

SS 9/1/2011 4.88 5.88 5.44E-03 0 0.23 8.27E+05 3.36E+05 3.18E-06 2.74E-06 

SS 9/1/2011 4.88 5.88 5.44E-03 15 0.4 8.27E+05 3.23E+05 2.45E-06 5.61E-06 

SS 9/1/2011 4.88 5.88 5.44E-03 30 0.4 8.27E+05 3.11E+05 3.65E-06 6.28E-06 

SS 9/1/2011 4.88 5.88 5.44E-03 45 0.17 8.27E+05 3.24E+05 2.73E-06 1.83E-06 

SS 9/1/2011 4.88 5.88 5.44E-03 60 0.15 8.27E+05 3.75E+05 2.66E-06 1.71E-06 
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Table 7.1 Continued 

SS 9/1/2011 7.32 5.88 5.44E-03 0 0.24 7.46E+05 3.36E+05 0.00E+00 -1.22E-07 

SS 9/1/2011 7.32 5.88 5.44E-03 15 0 7.46E+05 3.23E+05 2.20E-06 -1.24E-05 

SS 9/1/2011 7.32 5.88 5.44E-03 30 0.23 7.46E+05 3.11E+05 0.00E+00 -8.05E-06 

SS 9/1/2011 7.32 5.88 5.44E-03 45 0.13 7.46E+05 3.24E+05 1.83E-06 -8.54E-07 

SS 9/1/2011 7.32 5.88 5.44E-03 60 0 7.46E+05 3.75E+05 4.88E-06 -8.54E-06 
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Table 7.2 - Used for comparisons in SAS –Sand-Silt B 

Sediment Dates Log(Average Attached 

Composites) 

Turbidity per 

Time 

Composites 

E. coli 

For each 

time (cfu/100 mL) 

Log 

(E. coli) 

Depth 2 

(cm) 

Average unattached 

Composite 

Concentrations 

(cfu/100ml) 

Log(Average 

unattached) 

SS 8/6/2011 2.85E-06 2.63 0 0 1.50E+05 4.97E+05 5.70E+00 

SS 8/6/2011 2.32E-06 2.63 0 0 1.50E+05 3.43E+05 5.54E+00 

SS 8/6/2011 3.79E-06 2.63 0 0 1.50E+05 9.67E+04 4.99E+00 

SS 8/6/2011 3.32E-06 2.63 0 0 1.50E+05 3.67E+05 5.56E+00 

SS 8/6/2011 2.45E-07 2.63 0 0 1.50E+05 4.67E+04 4.67E+00 

SS 8/6/2011 -2.97E-06 2.71 12.13 0 1.50E+05 1.70E+05 5.23E+00 

SS 8/6/2011 -5.24E-07 2.71 12.13 0 1.50E+05 2.93E+05 5.47E+00 

SS 8/6/2011 -4.54E-07 2.71 12.13 0 1.50E+05 5.33E+04 4.73E+00 

SS 8/6/2011 -7.97E-06 2.71 12.13 0 1.50E+05 0.00E+00 0.00E+00 

SS 8/6/2011 -1.12E-06 2.71 12.13 0 1.50E+05 0.00E+00 0.00E+00 

SS 8/23/2011 1.37E-07 1.25 0 2.72E+07 1.76E+07 0.00E+00 0.00E+00 

SS 8/23/2011 1.45E-06 1.25 0 2.72E+07 1.76E+07 1.77E+05 5.25E+00 

SS 8/23/2011 2.44E-06 1.25 0 2.72E+07 1.76E+07 2.97E+05 5.47E+00 

SS 8/23/2011 1.54E-06 1.25 0 2.72E+07 1.76E+07 1.87E+05 5.27E+00 

SS 8/23/2011 1.29E-06 1.25 0 2.72E+07 1.76E+07 1.57E+05 5.19E+00 

SS 8/23/2011 1.21E-06 1.06 14.64 2.72E+07 1.76E+07 3.33E+04 4.52E+00 

SS 8/23/2011 5.48E-07 1.06 14.64 2.72E+07 1.76E+07 6.67E+04 4.82E+00 

SS 8/23/2011 8.34E-06 1.06 14.64 2.72E+07 1.76E+07 6.73E+05 5.83E+00 

SS 8/23/2011 -2.03E-06 1.06 14.64 2.72E+07 1.76E+07 0.00E+00 0.00E+00 

SS 8/23/2011 -1.15E-06 1.06 14.64 2.72E+07 1.76E+07 8.67E+04 4.94E+00 

SS 9/1/2011 5.93E-06 1.24 0 7.75E+06 1.60E+08 1.50E+05 5.18E+00 

SS 9/1/2011 8.06E-06 1.24 0 7.75E+06 1.60E+08 3.07E+05 5.49E+00 

SS 9/1/2011 9.92E-06 1.24 0 7.75E+06 1.60E+08 3.43E+05 5.54E+00 

SS 9/1/2011 4.56E-06 1.24 0 7.75E+06 1.60E+08 1.00E+05 5.00E+00 

SS 9/1/2011 4.36E-06 1.24 0 7.75E+06 1.60E+08 9.33E+04 4.97E+00 
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Table 7.2 Continued 

SS 9/1/2011 -1.22E-07 3.62 37.24 7.75E+06 1.60E+08 1.47E+05 5.17E+00 

SS 9/1/2011 -1.02E-05 3.62 37.24 7.75E+06 1.60E+08 0.00E+00 0.00E+00 

SS 9/1/2011 -8.05E-06 3.62 37.24 7.75E+06 1.60E+08 1.23E+05 5.09E+00 

SS 9/1/2011 9.76E-07 3.62 37.24 7.75E+06 1.60E+08 7.67E+04 4.88E+00 

SS 9/1/2011 -3.66E-06 3.62 37.24 7.75E+06 1.60E+08 0.00E+00 0.00E+00 
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Table 7.3 - Used for comparisons in SAS –Sand-Silt C 

Sediment Dates Turbidity per 

time Composites 

E. coli (cfu/100 

mL) For each time 

Log of 

(E. coli) 

Depth 

2 (cm) 

Average unattached 

Composite Concentrations 

cfu/100ml 

Log (of Average 

unattached) 

H20 Background 

cfu/100mL 

SS 8/6/2011 1.62 4.87E+05 5.69 15.2 573333 5.76 4.73E+02 

SS 8/6/2011 1.75 6.95E+05 5.84 15.2 823333 5.92 4.73E+02 

SS 8/6/2011 1.65 6.48E+05 5.81 15.2 976667 5.99 4.73E+02 

SS 8/6/2011 1.48 7.44E+05 5.87 15.2 983333 5.99 4.73E+02 

SS 8/6/2011 1.48 6.84E+05 5.83 15.2 1090000 6.04 4.73E+02 

SS 8/6/2011 2.15 4.60E+05 5.66 15.2 616667 5.79 4.73E+02 

SS 8/6/2011 1.45 6.62E+05 5.82 15.2 570000 5.76 4.73E+02 

SS 8/6/2011 1.51 5.89E+05 5.77 15.2 843333 5.93 4.73E+02 

SS 8/6/2011 1.66 6.98E+05 5.84 15.2 943333 5.97 4.73E+02 

SS 8/6/2011 1.82 6.91E+05 5.84 15.2 976667 5.99 4.73E+02 

SS 8/23/2011 3.16 1.81E+04 4.26 15.2 43333 4.64 1.40E+02 

SS 8/23/2011 3.16 4.21E+05 5.62 15.2 206667 5.32 1.40E+02 

SS 8/23/2011 3.95 4.92E+05 5.69 15.2 146667 5.17 1.40E+02 

SS 8/23/2011 4.13 4.08E+05 5.61 15.2 316667 5.5 1.40E+02 

SS 8/23/2011 4.42 4.76E+05 5.68 15.2 403333 5.61 1.40E+02 

SS 8/23/2011 2.25 4.09E+04 4.61 15.2 66667 4.82 1.40E+02 

SS 8/23/2011 2.17 4.76E+05 5.68 15.2 350000 5.54 1.40E+02 

SS 8/23/2011 2.62 4.62E+05 5.66 15.2 276667 5.44 1.40E+02 

SS 8/23/2011 3.58 5.19E+05 5.71 15.2 386667 5.59 1.40E+02 

SS 8/23/2011 3.65 4.83E+05 5.68 15.2 310000 5.49 1.40E+02 

SS 9/1/2011 3.16 9.52E+05 5.98 15.2 510000 5.71 4.00E+00 

SS 9/1/2011 3.16 7.42E+05 5.87 15.2 456667 5.66 4.00E+00 

SS 9/1/2011 3.95 5.56E+05 5.75 15.2 510000 5.71 4.00E+00 

SS 9/1/2011 4.13 4.06E+05 5.61 15.2 473333 5.68 4.00E+00 

SS 9/1/2011 4.42 254508.7 5.41 15.2 520000 5.72 4.00E+00 
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Table 7.3 Continued 

SS 9/1/2011 2.25 8.09E+05 5.91 15.2 453333 5.66 4.00E+00 

SS 9/1/2011 2.17 8.64E+05 5.94 15.2 516667 5.71 4.00E+00 

SS 9/1/2011 2.62 7.44E+05 5.87 15.2 420000 5.62 4.00E+00 

SS 9/1/2011 3.58 6.20E+05 5.79 15.2 523333 5.72 4.00E+00 

SS 9/1/2011 3.65 3.04E+05 5.48 15.2 653333 5.82 4.00E+00 
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Modeled and Calculated Resuspension Values  

A-Table with Sediments at location 2 Physical Resuspension was calculated from the attached and unattached sediments. Resuspension U&A 

are averaged from the Physical Resuspension for the second segment. PU = Physical Resuspension Unattached, PA= Physical Resuspension 

Attached, RUA = Physical Resuspension Unattached Average, RAA= Physical Resuspension Attached Average, CMU= Calibrate Model 

without calibrated n Unattached, CMA = Calibrate Model without calibrated n attached, OMU = Original Model unattached, OMA = Original 

Model attached, CMUn = Calibrate Model without calibrated average n Unattached, CMAn == Calibrate Model without calibrated average n 

Attached, CMUn2 = Calibrate Model without calibrated n (for each bottom sediments) Unattached, and CMAn2 = Calibrate Model without 

calibrated n (for each bottom sediments) Attached.  

Table 8.1 - Used for comparisons of Modeled and Calculated Resuspension Values 

Sediment PU PA RUA RAA CMU CMA OMU OMA CMUn CMAn CMUn2 CMAn2 

BF 3.24E-06 -2.99E-05 1.78E-06 -8.06E-06 2.98E-09 1.09E-07 2.98E-12 5.81E+01 2.64E-07 2.20E-07 1.22E-06 -5.67E-06 

BF 2.16E-06 -6.75E-06 1.78E-06 -8.06E-06 2.98E-09 1.09E-07 2.98E-12 5.81E+01 2.64E-07 2.20E-07 1.22E-06 -5.67E-06 

BF 3.27E-09 -1.03E-05 1.78E-06 -8.06E-06 2.98E-09 1.09E-07 2.98E-12 5.81E+01 2.64E-07 2.20E-07 1.22E-06 -5.67E-06 

BF 1.71E-06 1.47E-05 1.78E-06 -8.06E-06 2.98E-09 1.09E-07 2.98E-12 5.81E+01 2.64E-07 2.20E-07 1.22E-06 -5.67E-06 

BF 1.34E-05 3.20E-06 1.34E-05 3.20E-06 1.15E-09 1.08E-08 1.15E-12 5.77E+00 9.02E-08 2.13E-08 1.57E-05 3.37E-06 

Sand 3.71E-07 -5.67E-07 1.32E-05 3.84E-06 5.10E-08 9.47E-07 5.10E-11 5.57E+04 4.52E-06 2.32E-06 8.49E-06 3.95E-06 

Sand 3.90E-07 1.34E-06 1.32E-05 3.84E-06 5.10E-08 9.47E-07 5.10E-11 5.57E+04 4.52E-06 2.32E-06 8.49E-06 3.95E-06 

Sand 3.89E-05 1.07E-05 1.32E-05 3.84E-06 5.10E-08 9.47E-07 5.10E-11 5.57E+04 4.52E-06 2.32E-06 8.49E-06 3.95E-06 

Sand 3.31E-07 3.72E-07 3.31E-07 3.72E-07 1.97E-07 3.95E-06 1.97E-10 2.33E+05 1.57E-05 9.49E-06 4.3E-07 4.04E-07 

SS 9.09E-08 -2.70E-06 1.03E-06 -2.84E-06 3.30E-09 1.55E-04 3.30E-12 4.33E+03 2.93E-07 2.95E-04 1.35E-06 -2.17E-06 

SS 1.21E-06 1.76E-07 1.03E-06 -2.84E-06 3.30E-09 1.55E-04 3.30E-12 4.33E+03 2.93E-07 2.95E-04 1.35E-06 -2.17E-06 

SS 1.78E-06 -6.00E-06 1.03E-06 -2.84E-06 3.30E-09 1.55E-04 3.30E-12 4.33E+03 2.93E-07 2.95E-04 1.35E-06 -2.17E-06 

SS 2.15E-06 6.84E-06 2.15E-06 6.84E-06 3.57E-07 6.22E-05 3.57E-10 1.74E+03 2.79E-05 1.15E-04 1.91E-06 7.07E-06 
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Appendix B Matlab Programs for processing data 

ADV Analysis Program 

Matlab program written by Dr. Rehmann originally for flume experiments. From output of 

ADV analyzes the velocity of the flume at multiple points and outputs error, average 

velocity and signal to noise ratios.  

 

%  ADV_ANALYZE   Compute statistics of velocity measured with an ADV 
% 
% 
%  Chris Rehmann, 11-5-09 
  
%  Set the path 
  
   codedir = pwd; 
   addpath(codedir) 
  
%  Clean up 
  
   clear; close all 
    
%  Set constants 
  
   delimstr = ';';              %  Delimiter for the ADV files 
   startrow = 10;               %  Starting row of data in ADV files 
   startcol = 0;                %  Starting column of data in ADV files 
   mincor   = 70;               %  Minimum correlation 
   minSNR   = 5;                %  Minimum SNR 
   alpha    = 0.01;             %  Convergence criterion for averaging 
    
%  Find the filtered velocity files 
  
   datadir = uigetdir; 
   cd(datadir) 
   dirstruct = dir('*.V?');     %  Get .Vf and .Vu files 
   nfiles = length(dirstruct); 
   [filename{1:nfiles}] = deal(dirstruct.name); 
  
%  Process the files 
  
   clc; disp([... 
'Filename   Vx mean   Vy mean   Vz mean   % good    % spike    Tavgx (s)  Tavgy (s)  Tavgz (s)']) 
  
   for ifile = 1:nfiles 
        data = dlmread(filename{ifile},delimstr,startrow,startcol);          
        %  Get the data 
        ntotal = size(data,1);                                               
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        %  Find the number of points 
         
        cor0 = data(:,7);       SNR0 = data(:,10);                           
        %  Get correlation and SNR 
        cor1 = data(:,8);       SNR1 = data(:,11); 
        cor2 = data(:,9);       SNR2 = data(:,12); 
         
        spike_indx = find(cor0 == 0);                                            
        %  Spikes have blank data, or zeros 
        nspikes    = length(spike_indx);                                         
        %  Number of spikes         
        good_indx  = find(cor0 >= mincor & cor1 >= mincor & cor2 >= mincor & ... 
                          SNR0 >= minSNR & SNR1 >= minSNR & SNR2 >= minSNR); 
        ngood      = length(good_indx);                                          
        %  Number of good points 
             
        Vx = data(good_indx,4);                                                  
        %  Extract velocity components 
        Vy = data(good_indx,5); 
        Vz = data(good_indx,6); 
         
        t = data(good_indx,1); 
        Tavgx = avgtime(t,Vx,alpha); 
        Tavgy = avgtime(t,Vy,alpha); 
        Tavgz = avgtime(t,Vz,alpha); 
         
        disp([filename{ifile} '  ' num2str(mean(Vx)) '  '... 
            num2str(mean(Vy)) '  ' num2str(mean(Vz))  '     '... 
              num2str(100*ngood/ntotal) '     ' num2str(100*nspikes/ntotal)...  
              '   ' num2str(Tavgx) '   ' num2str(Tavgy)...  
              '   ' num2str(Tavgz)]) 
   end 
    

    
%      Column          Variable 
%         1            Time (seconds) 
%         2            Position 
%         3            Flag 
%         4            x-velocity 
%         5            y-velocity 
%         6            z-velocity 
%         7            Correlation 0  
%         8            Correlation 1 
%         9            Correlation 2 
%        10            SNR 0 
%        11            SNR 1 
%        12            SNR 2 
%        13            Amplitude 0 
%        14            Amplitude 1 
%        15            Amplitude 2 
%        16            Average correlation 
%        17            Average SNR 
%        18            Average amplitude  
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Erosion Calculation and Resuspension Calculation  

Matlab program written by Amy A Cervantes originally for resuspension experiments. From 

input of csv file read in and Erosion and Resuspension rates are calculated.  
 

% Program to read in csv file for Amy A. Cervantes to double check her work  
% Created Fall 2011, Modified through, Final edits 2/15/2012 
  
% For this matlab code you must first have your data in an excel sheet and 
% save as a csv file. Please note the output will be given in matrix form. 
% A sample CSV file can be found in my Appendix for my thesis 
  
beep off 
clc 
clear all 
% Get to the correct filename and path 
[filename,path,notimportant] = uigetfile(); 
% Put the path to file and filename together 
fullpath = strcat(path, filename); 
  
% Actually load the data. This creates a variable data with two arrays: 
% data.data = array of data values based on csv file 
% data.text = column titles and  
data = importdata(fullpath); 
  
%constants through, everything else changes and is in the CSV file 
g = 9.81; % Gravity m/s^2 
pi = 3.14; 
a = 8.5E-16; % m^2 constante 
b = 2.00E-2; % m^3/kg 
ae = 8.5E-16; % m^2 constant, for unattached 
be = 9.07E-3; % m^3/kg, for unattached 
Eo = 1E-6; % assumed erosion rate at the threshold of erosion m/s AKA Eoa 
Eoe = 1; % assumed erosion rate at the threshold of erosion m/s  
S = 0.01; % percentage Slope in % 
w = 0.6096; % meters width of flume 
Pw = 1000; % Density of Water kg/m^3 
  
% variables for looping over n's 
dataoutrow = 1; 
dataout_Res = cell(6,6); 
  
% Now we do some CALCULATIONS! 
  
% N/m^2 NONCOHESIVE Shear stress, where  d = is diameter in m, Tcn = d*414 
Tcn = data.data(1:6,1)*414; 
  
% C5 = Fb/d^2 Fb given in Figure 3.22 of Lick 2009 "Sediment and  
% Contaminant Transport in Surface Water Introduction"  
C5 = data.data(1:6,3)./(data.data(1:6,1).^2); 
  
% C3 = (pi*(Pb-Pw)*g)/6; Pb = density of sediment, Pw = density of water 
C3 = ((data.data(1:6,2)-Pw).*pi*g)./6; 
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% Equation for COHESIVE shear stress Tc = 
% Tcn.*(1+(a.*exp(b.*Pb))./(d^2)+(C5./(C3.*d))); 
Tc = Tcn.*(1+(a.*exp(b.*data.data(1:6,2)))./(data.data(1:6,1).^2)+(C5./... 
    (C3.*data.data(1:6,1)))); 
  
% hydraulic radius based on height 6 inch and 9 inch heights (m). 
% HR = (w*Height)./(w+2.*Height); 
HR = (w*data.data(1:6,4))./(w+2.*data.data(1:6,4)); 
  
% Last shear stress is for regular stress based on slope only (N/m^2). 
Tb = Pw*g*HR.*S; 
  
% EROSION FINAL in m/s, E = Eo.*((Tb-Tcn)./(Tc-Tcn)).^n); Where n is a 
% fitting parameter mostly assumed to be 2 but can be changed. 
E = Eo.*((Tb-Tcn)./(Tc-Tcn)).^(data.data(1:6,7)); 
  
% Resuspension Calc ATTACHED Fractions % For right now we are assuming Eo  
% is the same in both Equations no Eoa or Eoe yet UNITS cfu/m^2/s. This  
% will be fitting issues. Ra = E.* Ca, where Ca is attached concentration   
% in sediment. Ca [cfu/m^3) 
Ra = E.*(data.data(1:6,5)); 
  
% Calculating what n should be for a perfect fit to the physical data  
% measured. n = (Ra/ Ca.*Eo)))./(log((Tb-Tcn)./(Tc-Tcn))); 
n = (log(data.data(1:6,12)./(data.data(1:6,5).*Eo)))./(log((Tb-Tcn)./... 
    (Tc-Tcn))); 
  

  
% Resuspension Calc UNattached Fractions 
% N/m^2 NONCOHESIVE Shear stress, where d = is diameter in m, Tcn = d*414 
Tcne = data.data(8:8,1)*414; 
  
% C5 = Fb/d^2 Fb given in Figure 3.22 of Lick 2009 "Sediment and Contaminant 
% Transport in Surface Water Introduction"  
C5e = data.data(1:6,9)./(data.data(1:6,10).^2); 
  
% C3 = (pi*(Pb-Pw)*g)/6; Pb = density of sediment, Pw = density of water 
C3e = ((data.data(1:6,11)-Pw).*pi*g)./6; 
  
% Equation for COHESIVE shear stress 
% Tcne.*(1+(a.*exp(b.*Pb))./(d^2)+(C5./(C3.*d))); 
Tce = Tcne.*(1+(ae.*exp(be.*data.data(1:6,11)))./(data.data(1:6,10).^2)+... 
    (C5e./(C3e.*data.data(1:6,10)))); 
  
% hydraulic radius based on height 6 inch and 9 inch heights (m). 
% HR = (w*Height)./(w+2.*Height); 
HRe = (w*data.data(1:6,4))./(w+2.*data.data(1:6,4)); 
  
%Last shear stress is for regular stress based on slope only (N/m^2). 
Tbe = Pw*g*HRe.*S; 
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% EROSION FINAL in m/s, E = Eo.*((Tb-Tcn)./(Tc-Tcn)).^nu); Where n is a 
% fitting parameter mostly assumed to be 2 but can be changed. 
Ee = Eoe.*((Tbe)./(Tce)).^(data.data(1:6,8)); 
  
% Resuspension Calc UNATTACHED Fractions % For right now we are assuming  
% Eo is the same in both Equations no Eoa or Eoe yet UNITS cfu/m^2/s .  
% This will be fitting issues. Ra = E.* Ca, where Ca is attached   
% concentration in sedimente.  Ca [cfu/m^3) 
Rae = Ee.*(data.data(1:6,6)); 
  
% Calculating what n should be for a perfect fit to the physical data  
% measured. nu = (Ra/ Ca.*Eo)))./(log((Tb-Tcn)./(Tc-Tcn))); 
nu = (log(data.data(1:6,13)./(data.data(1:6,6).*Eoe)))./(log(Tbe./Tce)); 
  
% difference between calculate Resuspension and Physical model where 
% data.data(1:6,12) and data.data(1:6,13) 
DiffRa = Ra./data.data(1:6,12); 
DiffRae = Rae./data.data(1:6,13); 
  
 % Change the name of the file to reflect the variables used, output 
 % includes all resuspension values 
        for indx=1:length(Ra); 
            dataoutrow = dataoutrow+1; 
            dataout_Res(dataoutrow ,1:6) = num2cell([Ra(indx), n(indx),... 
                DiffRa(indx), Rae(indx), nu(indx),DiffRae(indx)]); 
        end 
% Save data to csv file 
csvwrite('NAME OF FILE.csv', cell2mat(dataout_Res));  
% Change the name each time between 1.22 or 3.66   
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4 
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0 

8.00E-
09 

0.15822
1 

590831
28 

205.666
7 

7 2.1 1E-
08 

0.00000
1 

101
0 

-2.84E-
06 

1.03E-
06 

SS11 0.00004
4 

128
0 

8.00E-
09 

0.2413 141867
00 

13300 2 2.6 1E-
08 

0.00000
1 

101
0 

6.84E-
06 

2.15E-
06 

Sand 0.0006 152

0 

7.50E-

07 

0.15980

8 

579468

63 

3136.66

7 

2 2.2 1E-

08 

0.00000

1 

101

0 

3.84E-

06 

1.32E-

05 

Sand21 0.0006 152
0 

7.50E-
07 

0.22225 1.59E+0
8 

8040 2 2.7 1E-
08 

0.00000
1 

101
0 

3.72E-
07 

3.31E-
07 

Biofilm 0.00032
2 
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0 

2.50E-
07 

0.16039
3 

132756.
7 

182.444
4 

-
11 

2.1 1E-
08 

0.00000
1 

101
0 

-8.06E-
06 

1.78E-
06 

Biofilm

31 

0.00032
2 
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0 

2.50E-
07 

0.23495 8222.66
7 

44 2 1.7 1E-
08 

0.00000
1 

101
0 

3.20E-
06 

1.34E-
05 

Table 9.1 - Used for comparisons in Matlab CSV file

Example of CSV File for input of Sensitivity and Erosion-Resuspension calculations in 

Matlab.  

Variables should be in order for Matlab code to work. Diameter (m), Density (kg/m
3
), Fb 

(N), Depth (m), Concentration of E. coli in Sediment attached Ca (CFU/m
3
), n1, n2, Fbe 

(N), De(m), Density (Kg/m
3
), Resuspension attached physically calculated (CFU/m

2
/s), and 

Resuspension unattached calculated (CFU/m
2
/s). 

 



www.manaraa.com

112 

 

 

LISST Output 

Matlab program written by Amy A Cervantes originally for resuspension experiments. From 

input of LISST file read in and final particle size analysis as output.  

 

%  LISST DATA Compute statistics of particle sizes 
% 
% 
%  Amy Cervantes 09-23-11, reading LISST files into data files.  
  
%  Set the path 
  
   codedir = pwd; 
   addpath(codedir) 
  
%  Clean up 
  
   clear; close all 
   beep off 
    
%  Set constants 
  
   delimstr = ' ';              %  Delimiter for the LISST files 
   startrow = 0;               %  Starting row of data in files 
   startcol = 0;                %  Starting column of data in files 
   stopcol = 32;                %  Starting column of data in files    
   mcrnCnvFctr = 10^((log10(500)-log10(2.5))/32); 
    
%  Find the filtered velocity files 
  
   datadir = uigetdir; 
   cd(datadir) 
   dirstruct = dir('*.asc');                             %  Get .asc files 
   nfiles = length(dirstruct); 
   [filename{1:nfiles}] = deal(dirstruct.name); 
    
%  Process the files 
  
   clc; disp(['Filename                   Microns '])% Load the sample data  
    
%  Factors that multipy to the avearge to get the bin size multiplied.  
 bins = [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 0 0 0 0 0 0 0 0 

0 0 0];  
 MF = [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0]; 
 %multiplication factor 
for ifile = 1:nfiles 
        data = dlmread(filename{ifile},delimstr,startrow,startcol);    
        %  Get the data 
        mu = mean(data);% Calculate the mean of each column 
        Newarray = mu.*MF; % multiplying to get rid of last 10 bins 
        TotalVolume = sum(Newarray); % gives the total of the averages 
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        T = Newarray.*bins; % multiply by the bins sizes  
        TotalVbins = sum(T); % summing the bins*total Volumes 
        Finalbins = TotalVbins/TotalVolume; %self explanatory but trying  
        %to Figure out what bin size we should look at. TOTAL  
        microns = 2.5*mcrnCnvFctr^(Finalbins); %Equation based on bins  
        %being divided (Log (500)-log(2.5))/32 
        disp([filename{ifile} '  ' num2str(microns)]) 
end 
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Flow Analysis  

Matlab program written by Dr. Rehmann originally for flume experiments. From output of 

ADV ten point profile, analyzes the velocity of the flume at multiple points and outputs the 

flow rate in gpm.  

 
%  QDRIVER   Process measurements to compute discharge 
% 
% 
%  Chris Rehmann, 11-11-09 
  
%  Clean up 
  
   clear; close all 
    
%  Set conversion factors 
  
   in2cm = 2.54;                 %  inches->cm 
   cucms2gpm = 1.585e-2;        %  cm3/s -> gpm 
     
%  Set constants 
  
   H = [6 6.5]*in2cm;            %  Depth (cm) 
   B = 60;                       %  Width (cm) 
    
%  Load the data 
  
%  data = load('C:\Chris\Research\Cowpie resuspension\aDV\Nov6\nov6stats.txt'); 
%  data = load('C:\Chris\Research\Cowpie resuspension\aDV\Nov19\nov19_stats.txt'); 
%  data = load('C:\Velocity Data\12-11 Report3.txt'); 
  
   [filename,pathname,dum] = uigetfile('*.txt','Get .txt file'); 
   data = load([pathname filename]); 
    
   x   = data(:,2);                         %  Downstream position (cm)  
   y   = data(:,3);                         %  Transverse position (cm) 
   z   = data(:,4);                         %  Vertical position (cm) 
   vn1 = data(:,5);                         %  Flow-normal component 1 (cm/s) 
   vn2 = data(:,6);                         %  Flow-normal component 2 (cm/s) 
   u   = data(:,7);                         %  Streamwise velocity (cm/s) 
    
   U   = sqrt(vn1.^2 + vn2.^2 + u.^2);      %  Resultant velocity (cm/s) 
    
%  Process the sets 
  
   xs = unique(x);                          %  Find the downstream positions 
   nx = length(xs); 
    
   for i = 1:nx 
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       indx = find(x == xs(i));             %  Get the data at a cross-section 
       yxs  = y(indx); 
       zxs  = z(indx); 
       uxs  = u(indx); 
       Uxs  = U(indx); 
        
       [Qlogx,Qlinx] = discharge(yxs,zxs,uxs,H(i),B); 
       [Qlogr,Qlinr] = discharge(yxs,zxs,Uxs,H(i),B); 
       disp(' ') 
       disp(['Downstream position (cm):  ' num2str(xs(i))]) 
       disp(['Discharge with linear extrapolation and streamwise velocity (gpm):   ' 

num2str(Qlinx*cucms2gpm)]) 
       disp(['Discharge with log law fitting and streamwise velocity (gpm):        ' num2str(Qlogx*cucms2gpm)]) 
       disp(['Discharge with linear extrapolation and resultant velocity (gpm):    ' num2str(Qlinr*cucms2gpm)]) 
       disp(['Discharge with log law fitting and resultant velocity (gpm):         ' num2str(Qlogr*cucms2gpm)])        
   end 
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Matlab program written by Amy A Cervantes originally for resuspension experiments. From 

input of csv file read in and sensitivity of a and b parameters as output.  

 
% Program to read in csv file for Amy A. Cervantes to double check her work  
% Created Fall 2011, Modified through, Final edits 2/15/2012 
  
% For this matlab code you must first have your data in an excel sheet and 
% save as a csv file. Please note the output will be given in matrix form. 
% A sample CSV file can be found in my Appendix for my thesis 
  

  
beep off 
clc 
clear all 
% Get to the correct filename and path 
[filename,path,notimportant] = uigetfile(); 
% Put the path to file and filename together 
fullpath = strcat(path, filename); 
  
% Actually load the data. This creates a variable data with two arrays: 
% data.data = array of data values based on csv file 
% data.text = column titles and  
data = importdata(fullpath); 
  
g = 9.81; %Gravity m/s^2 
pi = 3.14; 
ab = 8.5E-16; %m^2 constante 
bb =  9.07E-3; % m^3/kg 
Eo = 1E-6; % assumed erosion rate at the threshold of erosion m/s 
Eoe = 1E-6; % assumed erosion rate at the threshold of erosion m/s  
S = 0.01; % percentage Slope 
w = 0.6096; % meters width of tank 
Pw = 1000; % Density of Water kg/m^3 
n1 = 2; 
n2 = 2; 
  
% variables for looping over a&b's, note we start at zero and go to values 
% suggested, and delta = steps of difference for each iteration  
  
amin=0; amax=1E-15; deltaa=1E-16; 
bmin=0; bmax=1E-2; deltab=1E-3; 
dataoutrow = 1; 
dataout_a = cell(1+6*(((amax-amin)/deltaa)+1),11); 
dataout_b = cell(1+6*(((bmax-bmin)/deltab)+1),11); 
  
% for more details on the Calculations look at 
% Calculations.Res.and.Erosion.using.CSV 
  
% for loop over a 
for a=amin:deltaa:amax; 
  for b=bmin:deltab:bmax; 
    % Now we do some CALCULATIONS!! 
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    % N/m^2 NONCOHESIVE Shear stress 
    Tcn = data.data(1:6,1)*414; 
    % C5 = Fb/d^2 Fb given in Figure 3.22 
    C5 = data.data(1:6,3)./(data.data(1:6,1).^2); 
    % C3 = (pi*(Pb-Pw)*g)/6  
    C3 = ((data.data(1:6,2)-Pw).*pi*g)./6; 
    % Equation for COHESIVE shear stress 
    Tc = Tcn.*(1+(a.*exp(b.*data.data(1:6,2)))./(data.data(1:6,1).^2)+... 
        (C5./(C3.*data.data(1:6,1)))); 
    % hydraulic radius based on height the .1's are the 9 inch heights (m). 
    HR = (w*data.data(1:6,4))./(w+2.*data.data(1:6,4)); 
    % Last shear stress is for regular stress based on slope only (N/m^2). 
    Tb = Pw*g*HR.*S; 
    % EROSION FINAL in m/s 
    E = Eo.*((Tb-Tcn)./(Tc-Tcn)).^(n1); 
    % Resuspension Calc ATTACHED Fractions % For right now we are assuming Eo  
    % is the same in both Equations no Eoa or Eou yet. This will be fitting 
    % issues. 
    Ra = E.*(data.data(1:6,5)); 
    
    % for loop over b 
    % Resuspension Calc UNattached Fractions 
    Tcne = data.data(8:8,1)*414; 
    C5e = data.data(1:6,9)./(data.data(1:6,10).^2); 
    % C3 = (pi*(Pb-Pw)*g)/6  
    C3e = ((data.data(1:6,11)-Pw).*pi*g)./6; 
    % Equation for COHESIVE shear stress 
    Tce = Tcne.*(1+(a.*exp(b.*data.data(1:6,11)))./... 
        (data.data(1:6,10).^2)+(C5e./(C3e.*data.data(1:6,10)))); 
    % hydraulic radius based on height the .1's are the 9 inch heights (m). 
    HRe = (w*data.data(1:6,4))./(w+2.*data.data(1:6,4)); 
    % Last shear stress is for regular stress based on slope only (N/m^2). 
    Tbe = Pw*g*HRe.*S; 
    % EROSION FINAL in m/s 
    Ee = Eoe.*((Tbe)./(Tce)).^(n2); 
    % Resuspension Calc UNATTACHED Fractions % For right now we are assuming Eo is 
    % the same in both Equations no Eoa or Eou yet. This will be fitting issues. 
    Rae = Ee.*(data.data(1:6,6)); 
    % nu = 
%       (log(data.data(1:6,13)./(data.data(1:6,6).*Eoe)))./(log(Tbe./Tce)); 
     
    % Sensitivity Calcs: S = 
    % Abs((R-Rphysically).*ab)./((a-ab)*(Rphysically)), where ab = bas 
    % value, a = value iteration 
    Saa = abs((Ra-data.data(1:6,12)).*ab)./((a-ab).*data.data(1:6,12)); 
    Saae = abs((Rae-data.data(1:6,13)).*ab)./((a-ab).*data.data(1:6,13)); 
    Sab = abs((Ra-data.data(1:6,12)).*bb)./((b-bb).*data.data(1:6,12)); 
    Saeb = abs((Rae-data.data(1:6,13)).*bb)./((b-bb).*data.data(1:6,13)); 
  
    % Change the name of the file to reflect the variables used 
    for indx=1:length(Ra); 
        dataoutrow = dataoutrow+1; 
        dataout_a(dataoutrow ,1:11) = num2cell([data.data(indx,1),... 
            data.data(indx,2),data.data(indx,3), data.data(indx,4),... 
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            data.data(indx,5),data.data(indx,6),a, Ra(indx), Rae(indx),... 
            Saa(indx), Saae(indx)]); 
        dataout_b(dataoutrow ,1:11) = num2cell([data.data(indx,1),... 
            data.data(indx,2),data.data(indx,3), data.data(indx,4),... 
            data.data(indx,5),data.data(indx,6), b, Ra(indx), Rae(indx),... 
            Sab(indx), Saeb(indx)]); 
    end 
  end 
end 
  
% Save data to csv file 
csvwrite('Sensitivity_a_b_a.csv', cell2mat(dataout_a)); 
csvwrite('Sensitivity_a_b_b.csv', cell2mat(dataout_b));
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Sensitivity Analysis  

Matlab program written by Amy A Cervantes originally for resuspension experiments. From 

input of csv file read in and sensitivity of Eo and Eoe parameters as output.  

 

% Program to read in csv file for Amy A. Cervantes to double check her work  
% Created Fall 2011, Modified through, Final edits 2/15/2012 
  
% For this matlab code you must first have your data in an excel sheet and 
% save as a csv file. Please note the output will be given in matrix form. 
% A sample CSV file can be found in my Appendix for my thesis 
  

  
beep off 
clc 
clear all 
% Get to the correct filename and path 
[filename,path,notimportant] = uigetfile(); 
% Put the path to file and filename together 
fullpath = strcat(path, filename); 
  
% Actually load the data. This creates a variable data with two arrays: 
% data.data = array of data values based on csv file 
% data.text = column titles and  
data = importdata(fullpath); 
  
g = 9.81; % Gravity m/s^2 
pi = 3.14; 
a = 8.5E-16; % m^2 constante 
b =  9.07E-3; % m^3/kg 
Eob = 1E-6; % assumed erosion rate at the threshold of erosion m/s 
Eoeb = 1E-6; % assumed erosion rate at the threshold of erosion m/s  
S = 0.01; % percentage Slope 
w = 0.6096; % meters width of tank 
Pw = 1000; % Density of Water kg/m^3 
n1 = 2; 
n2 = 2; 
  
% variables for looping over Eo's, note we start at zero and go to values 
% suggested, and delta = steps of difference for each iteration  
Eomin=1E-6; Eomax=1; deltaEo=1; 
Eoemin=1E-6; Eoemax=1; deltaEoe=1; 
dataoutrow = 1; 
% calculation for figuring out how large the excel output should be 
dataout_Eo = cell(1+6*(((log10(Eomax)-log10(Eomin))/deltaEo)+1)*... 
    (((log10(Eoemax)-log10(Eoemin))/deltaEoe)+1),10); 
dataout_Eoe = cell(1+6*(((log10(Eomax)-log10(Eomin))/deltaEo)+1)*... 
    (((log10(Eoemax)-log10(Eoemin))/deltaEoe)+1),10); 
  
% for more details on the Calculations look at 
% Calculations.Res.and.Erosion.using.CSV 
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% for loop over Eo 
for Eoindx=log10(Eomin):deltaEo:log10(Eomax); 
    Eo = 10^(Eoindx); 
    % Now we do some CALCULATIONS!!!!!!!! 
    % N/m^2 NONCOHESIVE Shear stress 
    Tcn = data.data(1:6,1)*414; 
    % C5 = Fb/d^2 Fb given in Figure 3.22 
    C5 = data.data(1:6,3)./(data.data(1:6,1).^2); 
    % C3 = (pi*(Pb-Pw)*g)/6  
    C3 = ((data.data(1:6,2)-Pw).*pi*g)./6; 
    % Equation for COHESIVE shear stress 
    Tc = Tcn.*(1+(a.*exp(b.*data.data(1:6,2)))./(data.data(1:6,1).^2)+... 
        (C5./(C3.*data.data(1:6,1)))); 
    % hydraulic radius based on height the .1's are the 9 inch heights (m). 
    HR = (w*data.data(1:6,4))./(w+2.*data.data(1:6,4)); 
    % Last shear stress is for regular stress based on slope only (N/m^2). 
    Tb = Pw*g*HR.*S; 
    % EROSION FINAL in m/s 
    E = Eo.*((Tb-Tcn)./(Tc-Tcn)).^(n1); 
    % Resuspension Calc ATTACHED Fractions % For right now we are assuming Eo is 
    % the same in both Equations no Eoa or Eou yet. This will be fitting issues. 
    Ra = E.*(data.data(1:6,5)); 
  

     
    % for loop over Eoe 
    for Eoeindx=log10(Eoemin):deltaEoe:log10(Eoemax); 
        Eoe = 10^(Eoeindx); 
        % Resuspension Calc UNattached Fractions 
        Tcne = data.data(8:8,1)*414; 
        C5e = data.data(1:6,9)./(data.data(1:6,10).^2); 
        % C3 = (pi*(Pb-Pw)*g)/6  
        C3e = ((data.data(1:6,11)-Pw).*pi*g)./6; 
        % Equation for COHESIVE shear stress 
        Tce = Tcne.*(1+(a.*exp(b.*data.data(1:6,11)))./... 
            (data.data(1:6,10).^2)+(C5e./(C3e.*data.data(1:6,10)))); 
        % hydraulic radius based on height the .1's are the 9 inch heights (m). 
        HRe = (w*data.data(1:6,4))./(w+2.*data.data(1:6,4)); 
        % Last shear stress is for regular stress based on slope only (N/m^2). 
        Tbe = Pw*g*HRe.*S; 
        % EROSION FINAL in m/s 
        Ee = Eoe.*((Tbe)./(Tce)).^(n2); 
        % Resuspension Calc UNATTACHED Fractions % For right now we are  
        % assuming Eo isthe same in both Equations no Eoa or Eou yet.  
        Rae = Ee.*(data.data(1:6,6)); 
         
        % Sensitivity Calcs: S = 
        % Abs((Ra-Rphysically).*Eob)./((Eo-Eob)*(Rphysically)), where Eob 
        % and Eoeb = bas value, Eo/oe = value iteration 
        Sa = abs((Ra-data.data(1:6,12)).*Eob)./((Eo-Eob)... 
            .*data.data(1:6,12)); 
        Sb = abs((Rae-data.data(1:6,13)).*Eoeb)./((Eoe-Eoeb)... 
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            .*data.data(1:6,13)); 
  
        % Change the name of the file to reflect the variables used 
        for indx=1:length(Ra); 
            dataoutrow = dataoutrow+1; 
            dataout_Eo(dataoutrow ,1:10) = num2cell([data.data(indx,1),... 
                data.data(indx,2),data.data(indx,3), data.data(indx,4),... 
                data.data(indx,5),data.data(indx,6), Eo, Ra(indx), ... 
                Rae(indx), Sa(indx)]); 
            dataout_Eoe(dataoutrow ,1:10) = num2cell([data.data(indx,1),... 
                data.data(indx,2),data.data(indx,3), data.data(indx,4),... 
                data.data(indx,5),data.data(indx,6), Eoe, Ra(indx), ... 
                Rae(indx), Sb(indx)]); 
        end 
    end 
end 
  
% Save data to csv file 
  
csvwrite('Sensitivity_Eo_Eoe_Eo.csv', cell2mat(dataout_Eo)); 
csvwrite('Sensitivity_Eo_Eoe_Eoe.csv', cell2mat(dataout_Eoe)); 
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Matlab program written by Amy A Cervantes originally for resuspension experiments. From 

input of csv file read in and sensitivity of n1 and n2 parameters as output.  
 

% Program to read in csv file for Amy A. Cervantes to double check her work  
% Created Fall 2011, Modified through, Final edits 2/15/2012 
  
% For this matlab code you must first have your data in an excel sheet and 
% save as a csv file. Please note the output will be given in matrix form. 
% A sample CSV file can be found in my Appendix for my thesis 
  

  
beep off 
clc 
clear all 
% Get to the correct filename and path 
[filename,path,notimportant] = uigetfile(); 
% Put the path to file and filename together 
fullpath = strcat(path, filename); 
  
% Actually load the data. This creates a variable data with two arrays: 
% data.data = array of data values based on csv file 
% data.text = column titles and  
data = importdata(fullpath); 
  
g = 9.81; % Gravity m/s^2 
pi = 3.14; 
a = 8.5E-16; % m^2 constante 
b =  9.07E-3; % m^3/kg 
Eo = 1E-6; % assumed erosion rate at the threshold of erosion m/s 
Eoe = 1E-6; % assumed erosion rate at the threshold of erosion m/s  
S = 0.01; % percentage Slope 
w = 0.6096; % meters width of tank 
Pw = 1000; % Density of Water kg/m^3 
n1b = 2.0; 
n2b = 2.0; 
  
% variables for looping over n's 
n1min=1; n1max=5; deltan1=0.1; 
n2min=0; n2max=5; deltan2=0.1; 
dataoutrow = 1; 
% calculation for figuring out how large the excel output should be 
dataout_n1 = cell(1+6*(((n1max-n1min)/deltan1)+1)*... 
    (((n2max-n2min)/deltan2)+1),10); 
dataout_n2 = cell(1+6*(((n1max-n1min)/deltan1)+1)*... 
    (((n2max-n2min)/deltan2)+1),10); 
  
% for more details on the Calculations look at 
% Calculations.Res.and.Erosion.using.CSV 
  
% for loop over n1 
for n1=n1min:deltan1:n1max; 
    % Now we do some CALCULATIONS!!!!!!!! 
    % N/m^2 NONCOHESIVE Shear stress 
    Tcn = data.data(1:6,1)*414; 
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    % C5 = Fb/d^2 Fb given in Figure 3.22 
    C5 = data.data(1:6,3)./(data.data(1:6,1).^2); 
    % C3 = (pi*(Pb-Pw)*g)/6  
    C3 = ((data.data(1:6,2)-Pw).*pi*g)./6; 
    % Equation for COHESIVE shear stress 
    Tc = Tcn.*(1+(a.*exp(b.*data.data(1:6,2)))./(data.data(1:6,1).^2)... 
        +(C5./(C3.*data.data(1:6,1)))); 
    % hydraulic radius based on height the .1's are the 9 inch heights (m). 
    HR = (w*data.data(1:6,4))./(w+2.*data.data(1:6,4)); 
    % Last shear stress is for regular stress based on slope only (N/m^2). 
    Tb = Pw*g*HR.*S; 
    % EROSION FINAL in m/s 
    E = Eo.*((Tb-Tcn)./(Tc-Tcn)).^(n1); 
    % Resuspension Calc ATTACHED Fractions % For right now we are assuming Eo is 
    % the same in both Equations no Eoa or Eou yet. This will be fitting issues. 
    Ra = E.*(data.data(1:6,5)); 
  

      

  
    % for loop over n2 
    for n2=n2min:deltan2:n2max; 
        % Resuspension Calc UNattached Fractions 
        Tcne = data.data(8:8,1)*414; 
        C5e = data.data(1:6,9)./(data.data(1:6,10).^2); 
        % C3 = (pi*(Pb-Pw)*g)/6  
        C3e = ((data.data(1:6,11)-Pw).*pi*g)./6; 
        % Equation for COHESIVE shear stress 
        Tce = Tcne.*(1+(a.*exp(b.*data.data(1:6,11)))./... 
            (data.data(1:6,10).^2)+(C5e./(C3e.*data.data(1:6,10)))); 
        % hydraulic radius based on height the .1's are the 9 inch heights(m). 
        HRe = (w*data.data(1:6,4))./(w+2.*data.data(1:6,4)); 
        % Last shear stress is for regular stress based on slope only (N/m^2). 
        Tbe = Pw*g*HRe.*S; 
        % EROSION FINAL in m/s 
        Ee = Eoe.*((Tbe)./(Tce)).^(n2); 
        % Resuspension Calc UNATTACHED Fractions % For right now we are  
        % assuming Eo isthe same in both Equations no Eoa or Eou yet.  
        Rae = Ee.*(data.data(1:6,6)); 
  
        % Sensitivity Calcs: S = 
        % Abs((Ra-Rphysically).*n1b)./((n1-n1b)*(Rphysically)), where n1b 
        % and n2b = bas value, n1/2 = value iteration 
        Sa = abs((Ra-data.data(1:6,12)).*n1b)./((n1-n1b).*data.data(1:6,12)); 
        Sb = abs((Rae-data.data(1:6,13)).*n2b)./((n2-n2b).*data.data(1:6,13)); 
  
        % Change the name of the file to reflect the variables used 
        for indx=1:length(Ra); 
            dataoutrow = dataoutrow+1; 
            dataout_n1(dataoutrow ,1:10) = num2cell([data.data(indx,1),... 
                data.data(indx,2),data.data(indx,3), data.data(indx,4),... 
                data.data(indx,5),data.data(indx,6),n1,Ra(indx), ... 
                Rae(indx), Sa(indx)]); 
            dataout_n2(dataoutrow ,1:10) = num2cell([data.data(indx,1),... 
                data.data(indx,2),data.data(indx,3),data.data(indx,4),... 
                data.data(indx,5),data.data(indx,6),n2, Ra(indx), ... 
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                Rae(indx), Sb(indx)]); 
        end 
    end 
end 
  
% Save data to csv file 
  
csvwrite('Sensitivity_n1.csv', cell2mat(dataout_n1)); 
csvwrite('Sensitivity_n2.csv', cell2mat(dataout_n2)); 
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Appendix C SAS Code and Output  
SAS program written by Amy Cervantes originally for Resuspension Experiments. Written for the comparison of biofilm and flow 

rates using the input data sheet from Appendix A.   
data sheet; 

input Sediment $ HighMedLow$ Dates $ Points Depth Q Time Attachment EColi EColiBackground  

ResuspensionU ResuspensionA TotalResuspension Turbidity LISSTSizes EColiSedBefore  

EColiSedimentAfter AA LogAA TurbidityT Concentration LogC Height2 AU LogAU WaterBackground Q2; 

cards; 

; 

run; 

 

proc print data = sheet; 

run; 

 

proc sort data = sheet; 

by sediment; 

run; 

 

proc corr data = sheet; 

by sediment; 

var LISSTSizes TurbidityT Q Attachment ResuspensionU ResuspensionA Concentration Ecoli Points; 

title 'Correlation '; 

run; 

proc glm data = sheet; 

class HighMedLow sediment; 

model LISSTSizes = HighMedLow Sediment sediment*HighMedLow; 

lsmeans HighMedLow Sediment sediment*HighMedLow/ ADJUST=Tukey pdiff; 

title 'LISSTSizes Vs. HighMedLow and sediment'; 

run; 

proc glm data = sheet; 

class HighMedLow sediment; 

model TurbidityT = HighMedLow Sediment sediment*HighMedLow; 

lsmeans HighMedLow Sediment sediment*HighMedLow/ ADJUST=Tukey pdiff; 

title 'Turbidity Vs. HighMedLow and sediment'; 

run; 

proc glm data = sheet; 

class HighMedLow sediment; 

model Attachment = HighMedLow Sediment sediment*HighMedLow; 
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lsmeans HighMedLow Sediment sediment*HighMedLow/ ADJUST=Tukey pdiff; 

title 'Attachment Vs. HighMedLow and sediment'; 

run; 

proc glm data = sheet; 

class EColiSedimentAfter sediment; 

model WaterBackground = EColiSedimentAfter sediment; 

lsmeans EColiSedimentAfter/ ADJUST=Tukey pdiff; 

title 'E. coli Sediment After Vs. WaterBackground'; 

run; 

proc glm data = sheet; 

class AA sediment; 

model TurbidityT = AA sediment; 

lsmeans sediment/ ADJUST=Tukey pdiff; 

title 'AA Vs. TurbidityT'; 

run; 

 

options formdlim=' ';  

ods pdf startpage=no; 
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SAS program written by Amy Cervantes originally for Resuspension Experiments. Written for the comparison of biofilm and flow 

resuspension rates using the input data sheet from Appendix A. 

   
data sheet; 

input Sediment $ HighMedLow$ Dates $ Points Depth Q Time Attachment EColi EColiBackground  

ResuspensionU ResuspensionA TotalResuspension Turbidity LISSTSizes EColiSedBefore  

EColiSedimentAfter AA LogAA TurbidityT Concentration LogC Height2 AU LogAU WaterBackground Q2 ; 

cards; 

; 

run; 

 

proc print data = sheet; 

run; 

 

proc sort data = sheet; 

by Sediment; 

 

run; 

 

proc glm data = sheet; 

class HighMedLow sediment; 

model TotalResuspension = HighMedLow Sediment sediment*HighMedLow; 

lsmeans HighMedLow Sediment sediment*HighMedLow/ ADJUST=Tukey pdiff; 

title 'Total Resuspension Vs. HighMedLow and sediment'; 

run; 

proc glm data = sheet; 

class HighMedLow sediment; 

model ResuspensionA = HighMedLow Sediment sediment*HighMedLow; 

lsmeans HighMedLow Sediment sediment*HighMedLow/ ADJUST=Tukey pdiff; 

title 'ResuspensionA Vs. HighMedLow and sediment'; 

run; 

proc glm data = sheet; 

class HighMedLow sediment; 

model ResuspensionU = HighMedLow Sediment sediment*HighMedLow; 

lsmeans HighMedLow Sediment sediment*HighMedLow/ ADJUST=Tukey pdiff; 

title 'ResuspensionU Vs. HighMedLow and sediment'; 

run; 

proc glm data = sheet; 
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class sediment; 

model TotalResuspension = Turbidity Sediment ; 

lsmeans sediment/ ADJUST=Tukey pdiff; 

title 'Turbidity Vs.  sediment'; 

run; 

proc glm data = sheet; 

class sediment; 

model TotalResuspension = EColi Sediment ; 

lsmeans sediment/ ADJUST=Tukey pdiff; 

title 'Concentrations Vs.  sediment'; 

run; 

proc glm data = sheet; 

class sediment; 

model TotalResuspension = EColiSedimentAfter Sediment ; 

lsmeans sediment/ ADJUST=Tukey pdiff; 

title 'Sediment Concentrations Vs. sediment'; 

run; 

options formdlim=' ';  

ods pdf startpage=no; 
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SAS program written by Amy Cervantes originally for Resuspension Experiments. Written for the comparison time comparison on 

different sediments. Data sheet can be found in Appendix A.   
data sheet; 

input Sediment $ Dates $ Points Depth Q Time Attachment EColi EColiBackground  

ResuspensionU ResuspensionA TotalResuspension Turbidity LISSTSizes EColiSedBefore  

EColiSedimentAfter AA LogAA TurbidityT Concentration LogC Height2 AU LogAU WaterBackground; 

cards; 

; 

run; 

 

proc print data = sheet; 

run; 

 

proc sort data = sheet; 

by dates; 

run; 

proc glm data = sheet; 

by dates; 

class time; 

model LogAA = time; 

lsmeans time / ADJUST=Tukey pdiff; 

title 'LogAA vs Time'; 

run; 

*I'm trying something new, Reuspension Unattached; 

proc glm data = sheet; 

by dates; 

class time; 

model LogAU = time; 

lsmeans time / ADJUST=Tukey pdiff; 

title 'Log UA vs Time'; 

run; 

*I'm trying something new, ReuspensionTOTAL Unattached; 

proc glm data = sheet; 

by dates; 

class time; 

model TotalResuspension = time; 

lsmeans time / ADJUST=Tukey pdiff; 

title 'Total Resuspension vs Time'; 
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run; 

proc glm data = sheet; 

by dates; 

class time; 

model ResuspensionU = time; 

lsmeans time / ADJUST=Tukey pdiff; 

title 'ResuspensionU vs Time'; 

run; 

proc glm data = sheet; 

by dates; 

class time; 

model ResuspensionA = time; 

lsmeans time / ADJUST=Tukey pdiff; 

title 'ResuspensionA vs Time'; 

run; 

 

options formdlim=' ';  

ods pdf startpage=no; 
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SAS program written by Amy Cervantes originally for Resuspension Experiments. Written for the comparison of 15 cm depth and 23 

cm with different sediments and heights Data sheet can be found in Appendix A.   
 data sheet; 

input Sediment $ HighMedLow$ Dates $ Points Depth Q Time Attachment EColi EColiBackground  

ResuspensionU ResuspensionA TotalResuspension Turbidity LISSTSizes EColiSedBefore  

EColiSedimentAfter AA LogAA TurbidityT Concentration LogC Height2 AU LogAU WaterBackground Q2 ; 

cards; 

; 

run; 

 

proc print data = sheet; 

run; 

 

proc sort data = sheet; 

by Sediment; 

 

run; 

 

proc corr data = sheet; 

by Sediment; 

var Q TurbidityT height2 Attachment ResuspensionU ResuspensionA Concentration Ecoli LISSTSizes; 

title 'Correlation'; 

run; 

proc glm data = sheet; 

class height2 sediment; 

model LISSTSizes = height2 Sediment sediment*height2; 

lsmeans height2 Sediment sediment*height2/ ADJUST=Tukey pdiff; 

title 'LISSTSizes Vs. height2 and sediment'; 

run; 

proc glm data = sheet; 

class height2 sediment; 

model TurbidityT = height2 Sediment sediment*height2; 

lsmeans height2 Sediment sediment*height2/ ADJUST=Tukey pdiff; 

title 'Turbidity Vs. height2 and sediment'; 

run; 

proc glm data = sheet; 

class height2 sediment; 

model Attachment = height2 Sediment sediment*height2; 
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lsmeans height2 Sediment sediment*height2/ ADJUST=Tukey pdiff; 

title 'Attachment Vs. height2 and sediment'; 

run; 

 

options formdlim=' ';  

ods pdf startpage=no; 
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SAS program written by Amy Cervantes originally for Resuspension Experiments. Written for the comparison of 15 cm depth and 23 

cm with different sediments and heights for Resuspension only Data sheet can be found in Appendix A.   
data sheet; 

input Sediment $ HighMediumLow$ Dates $ Points Depth Q Time Attachment EColi EColiBackground  

ResuspensionU ResuspensionA TotalResuspension Turbidity LISSTSizes EColiSedBefore  

EColiSedimentAfter AA LogAA TurbidityT Concentration LogC Height2 AU LogAU WaterBackground Q2 ; 

cards; 

; 

run; 

 

proc print data = sheet; 

run; 

 

proc sort data = sheet; 

by Sediment; 

 

run; 

 

proc glm data = sheet; 

class height2 sediment; 

model TotalResuspension = height2 Sediment sediment*height2; 

lsmeans height2 Sediment sediment*height2/ ADJUST=Tukey pdiff; 

title 'Total Resuspension Vs. height2 and sediment'; 

run; 

proc glm data = sheet; 

class height2 sediment; 

model ResuspensionU = height2 Sediment sediment*height2; 

lsmeans height2 Sediment sediment*height2/ ADJUST=Tukey pdiff; 

title 'ResuspensionU Vs. height2 and sediment'; 

run; 

proc glm data = sheet; 

class height2 sediment; 

model ResuspensionA = height2 Sediment sediment*height2; 

lsmeans height2 Sediment sediment*height2/ ADJUST=Tukey pdiff; 

title 'Total ResuspensionA Vs. height2 and sediment'; 

run; 

 

options formdlim=' ';  
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ods pdf startpage=no; 
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SAS program written by Amy Cervantes originally for Resuspension Experiments. Written for the comparison of  model comparisons 

with different sediments and heights for Resuspension only Data sheet can be found in Appendix A.   
data sheet; 

input Sediment$ PU PA RUA RAA CMU CMA OMU OMA CMUn CMAn CMUn2 CMAn2; 

cards; 

BF 3.24E-06 -2.99E-05 1.78E-06 -8.06E-06 2.98E-09 1.09E-07 2.98E-12 5.81E+01 2.64E-

07 2.20E-07 0.00000122 -5.67E-06 

BF 2.16E-06 -6.75E-06 1.78E-06 -8.06E-06 2.98E-09 1.09E-07 2.98E-12 5.81E+01 2.64E-

07 2.20E-07 0.00000122 -5.67E-06 

BF 3.27E-09 -1.03E-05 1.78E-06 -8.06E-06 2.98E-09 1.09E-07 2.98E-12 5.81E+01 2.64E-

07 2.20E-07 0.00000122 -5.67E-06 

BF 1.71E-06 1.47E-05 1.78E-06 -8.06E-06 2.98E-09 1.09E-07 2.98E-12 5.81E+01 2.64E-

07 2.20E-07 0.00000122 -5.67E-06 

BF 1.34E-05 3.20E-06 1.34E-05 3.20E-06 1.15E-09 1.08E-08 1.15E-12 5.77E+00 9.02E-

08 2.13E-08 0.00001574 3.37E-06 

Sand 3.71E-07 -5.67E-07 1.32E-05 3.84E-06 5.10E-08 9.47E-07 5.10E-11 5.57E+04 4.52E-

06 2.32E-06 0.00000849 3.95E-06 

Sand 3.90E-07 1.34E-06 1.32E-05 3.84E-06 5.10E-08 9.47E-07 5.10E-11 5.57E+04 4.52E-

06 2.32E-06 0.00000849 3.95E-06 

Sand 3.89E-05 1.07E-05 1.32E-05 3.84E-06 5.10E-08 9.47E-07 5.10E-11 5.57E+04 4.52E-

06 2.32E-06 0.00000849 3.95E-06 

Sand 3.31E-07 3.72E-07 3.31E-07 3.72E-07 1.97E-07 3.95E-06 1.97E-10 2.33E+05 1.57E-

05 9.49E-06 0.00000043 4.04E-07 

SS 9.09E-08 -2.70E-06 1.03E-06 -2.84E-06 3.30E-09 1.55E-04 3.30E-12 4.33E+03 2.93E-

07 2.95E-04 0.00000135 -2.17E-06 

SS 1.21E-06 1.76E-07 1.03E-06 -2.84E-06 3.30E-09 1.55E-04 3.30E-12 4.33E+03 2.93E-

07 2.95E-04 0.00000135 -2.17E-06 

SS 1.78E-06 -6.00E-06 1.03E-06 -2.84E-06 3.30E-09 1.55E-04 3.30E-12 4.33E+03 2.93E-

07 2.95E-04 0.00000135 -2.17E-06 

SS 2.15E-06 6.84E-06 2.15E-06 6.84E-06 3.57E-07 6.22E-05 3.57E-10 1.74E+03 2.79E-

05 1.15E-04 0.00000191 7.07E-06 

; 

run; 

 

proc print data = sheet; 

run; 

 

proc reg data = sheet; 
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model RAA = CMAn2; 

title 'RAA = CMAn2;'; 

run; 

proc reg data = sheet; 

model RUA = CMUn2; 

title 'RUA = CMUn2'; 

run; 

 

proc reg data = sheet; 

model RUA = OMU; 

title 'RUA = OMU'; 

run; 

 

proc reg data = sheet; 

model RAA = OMA; 

title 'RAA = OMA'; 

run; 

 

options formdlim=' ';  

ods pdf startpage=no; 
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Correlation Tables for Similar Depths 

Table 10.1 – Correlation Tables for 15 cm Water Height 

6 inches-Sand LISSTSizes Turbidity Q Attachment Resuspension U Resuspension A Concentration EColi Points 

LISSTSizes 1 -0.14446 0.27383 0.04372 0.40648 0.2459 0.22088 0.21349 0.90355 

  0.4463 0.1431 0.8186 0.0258 0.1902 0.2408 0.2573 0.0001 

TurbidityT -0.14446 1 -0.88369 0.15769 -0.36315 -0.2687 -0.87416 -0.87859 0.06423 

 0.4463  0.0001 0.4053 0.0486 0.1511 0.0001 0.0001 0.736 

Q 0.27383 -0.88369 1 -0.18316 0.44191 0.33907 0.99178 0.99486 0 

 0.1431 0.0001  0.3326 0.0145 0.0668 0.0001 0.0001 1 

Attachment 0.04372 0.15769 -0.18316 1 -0.36824 0.15244 -0.19664 -0.17344 0.11508 

 0.8186 0.4053 0.3326  0.0453 0.4213 0.2977 0.3594 0.5448 

ResuspensionU 0.40648 -0.36315 0.44191 -0.36824 1 -0.08534 0.45318 0.42897 0.2163 

 0.0258 0.0486 0.0145 0.0453  0.6539 0.0119 0.018 0.251 

ResuspensionA 0.2459 -0.2687 0.33907 0.15244 -0.08534 1 0.30388 0.3367 0.1117 

 0.1902 0.1511 0.0668 0.4213 0.6539  0.1026 0.0689 0.5568 

Concentration 0.22088 -0.87416 0.99178 -0.19664 0.45318 0.30388 1 0.99639 -0.05069 

 0.2408 0.0001 0.0001 0.2977 0.0119 0.1026  0.0001 0.7902 

EColi 0.21349 -0.87859 0.99486 -0.17344 0.42897 0.3367 0.99639 1 -0.05612 

 0.2573 0.0001 0.0001 0.3594 0.018 0.0689 0.0001  0.7684 

Points 0.90355 0.06423 0 0.11508 0.2163 0.1117 -0.05069 -0.05612 1 

 0.0001 0.736 1 0.5448 0.251 0.5568 0.7902 0.7684  

          

Sand-SILT LISSTSizes Turbidity Q Attachment Resuspension U Resuspension A Concentration EColi Points 

LISSTSizes 1 -0.09654 0.42019 -0.31046 0.0785 -0.68557 0.18974 0.19086 0.80054 

  0.6118 0.0208 0.095 0.6801 0.0001 0.3153 0.3124 0.0001 

TurbidityT -0.09654 1 0.53209 0.17611 0.28928 0.20174 -0.38377 -0.09302 -0.28541 

 0.6118  0.0025 0.3519 0.121 0.285 0.0363 0.6249 0.1263 

Q 0.42019 0.53209 1 -0.06216 0.57912 -0.10523 0.14751 0.62121 0 
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 0.0208 0.0025  0.7442 0.0008 0.58 0.4366 0.0002 1 

Attachment -0.31046 0.17611 -0.06216 1 -0.11676 0.64044 -0.07526 -0.2535 -0.29421 

 0.095 0.3519 0.7442  0.5389 0.0001 0.6927 0.1765 0.1145 

ResuspensionU 0.0785 0.28928 0.57912 -0.11676 1 0.04119 0.02228 0.51145 -0.11971 

 0.6801 0.121 0.0008 0.5389  0.8289 0.907 0.0039 0.5286 

ResuspensionA -0.68557 0.20174 -0.10523 0.64044 0.04119 1 -0.1432 -0.08237 -0.59006 

 0.0001 0.285 0.58 0.0001 0.8289  0.4503 0.6652 0.0006 

Concentration 0.18974 -0.38377 0.14751 -0.07526 0.02228 -0.1432 1 0.49568 0.06924 

 0.3153 0.0363 0.4366 0.6927 0.907 0.4503  0.0053 0.7162 

EColi 0.19086 -0.09302 0.62121 -0.2535 0.51145 -0.08237 0.49568 1 -0.08908 

 0.3124 0.6249 0.0002 0.1765 0.0039 0.6652 0.0053  0.6397 

Points 0.80054 -0.28541 0 -0.29421 -0.11971 -0.59006 0.06924 -0.08908 1 

 0.0001 0.1263 1 0.1145 0.5286 0.0006 0.7162 0.6397  

          

BF LISSTSizes Turbidity Q Attachment Resuspension U Resuspension A Concentration EColi Points 

LISSTSizes 1 -0.29492 -0.32549 -0.19489 0.08592 -0.7161 0.40017 0.38376 0.87655 

  0.0647 0.0404 0.2282 0.5981 0.0001 0.0105 0.0145 0.0001 

TurbidityT -0.29492 1 0.76315 -0.41174 0.10108 0.14981 -0.50621 -0.51994 -0.11309 

 0.0647  0.0001 0.0083 0.5349 0.3562 0.0009 0.0006 0.4872 

Q -0.32549 0.76315 1 -0.08238 -0.03148 0.28723 -0.76532 -0.79929 0 

 0.0404 0.0001  0.6133 0.8471 0.0723 0.0001 0.0001 1 

Attachment -0.19489 -0.41174 -0.08238 1 -0.34682 0.179 0.08716 0.08786 -0.30825 

 0.2282 0.0083 0.6133  0.0283 0.2691 0.5928 0.5898 0.053 

ResuspensionU 0.08592 0.10108 -0.03148 -0.34682 1 -0.43039 -0.09727 -0.05981 0.05623 

 0.5981 0.5349 0.8471 0.0283  0.0056 0.5504 0.7139 0.7304 

ResuspensionA -0.7161 0.14981 0.28723 0.179 -0.43039 1 -0.34425 -0.34608 -0.46658 

 0.0001 0.3562 0.0723 0.2691 0.0056  0.0296 0.0287 0.0024 

Concentration 0.40017 -0.50621 -0.76532 0.08716 -0.09727 -0.34425 1 0.98441 0.13747 

 0.0105 0.0009 0.0001 0.5928 0.5504 0.0296  0.0001 0.3976 
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EColi 0.38376 -0.51994 -0.79929 0.08786 -0.05981 -0.34608 0.98441 1 0.1127 

 0.0145 0.0006 0.0001 0.5898 0.7139 0.0287 0.0001  0.4887 

Points 0.87655 -0.11309 0 -0.30825 0.05623 -0.46658 0.13747 0.1127 1 

 0.0001 0.4872 1 0.053 0.7304 0.0024 0.3976 0.4887  
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Correlation Tables for Different Depths 

Table 11.1 – Correlation Tables for 15 cm and 23 Water Height comparison 

SAND Q Turbidity T Height2 Attachment Resuspension U ResuspensionA Concentration EColi LISSTSizes 

Q 1 -0.91563 1 -0.50318 -0.02041 -0.02815 -0.63534 -0.64385 0.24435 

  0.0001 0.0001 0.0237 0.9319 0.9062 0.0026 0.0022 0.2991 

TurbidityT -0.91563 1 -0.91563 0.48951 -0.12694 0.00738 0.63781 0.63105 -0.35724 

 0.0001  0.0001 0.0285 0.5938 0.9754 0.0025 0.0028 0.122 

Height2 1 -0.91563 1 -0.50318 -0.02041 -0.02815 -0.63534 -0.64385 0.24435 

 0.0001 0.0001  0.0237 0.9319 0.9062 0.0026 0.0022 0.2991 

Attachment -0.50318 0.48951 -0.50318 1 -0.1681 0.51783 0.41723 0.40307 -0.29371 

 0.0237 0.0285 0.0237  0.4787 0.0194 0.0672 0.078 0.2088 

ResuspensionU -0.02041 -0.12694 -0.02041 -0.1681 1 -0.17465 -0.26269 -0.18807 0.33516 

 0.9319 0.5938 0.9319 0.4787  0.4614 0.2632 0.4272 0.1486 

ResuspensionA -0.02815 0.00738 -0.02815 0.51783 -0.17465 1 0.34142 0.36596 -0.1503 

 0.9062 0.9754 0.9062 0.0194 0.4614  0.1407 0.1125 0.5271 

Concentration -0.63534 0.63781 -0.63534 0.41723 -0.26269 0.34142 1 0.95157 -0.50712 

 0.0026 0.0025 0.0026 0.0672 0.2632 0.1407  0.0001 0.0225 

EColi -0.64385 0.63105 -0.64385 0.40307 -0.18807 0.36596 0.95157 1 -0.50064 

 0.0022 0.0028 0.0022 0.078 0.4272 0.1125 0.0001  0.0246 

LISSTSizes 0.24435 -0.35724 0.24435 -0.29371 0.33516 -0.1503 -0.50712 -0.50064 1 

 0.2991 0.122 0.2991 0.2088 0.1486 0.5271 0.0225 0.0246  

          

Sand-SILT Q Turbidity T Height2 Attachment Resuspension U ResuspensionA Concentration EColi LISSTSizes 

Q 1 0.87649 1 0.23587 0.36116 0.26578 0.87667 0.8927 -0.26839 

  0.0001 0.0001 0.3168 0.1177 0.2574 0.0001 0.0001 0.2526 

TurbidityT 0.87649 1 0.87649 0.10169 0.42184 0.15096 0.76395 0.74649 -0.34361 

 0.0001  0.0001 0.6697 0.0639 0.5252 0.0001 0.0002 0.138 

Height2 1 0.87649 1 0.23587 0.36116 0.26578 0.87667 0.8927 -0.26839 
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 0.0001 0.0001  0.3168 0.1177 0.2574 0.0001 0.0001 0.2526 

Attachment 0.23587 0.10169 0.23587 1 -0.36479 0.68302 0.26153 0.24282 -0.12107 

 0.3168 0.6697 0.3168  0.1138 0.0009 0.2654 0.3023 0.6111 

ResuspensionU 0.36116 0.42184 0.36116 -0.36479 1 -0.29238 0.29253 0.27852 -0.01341 

 0.1177 0.0639 0.1177 0.1138  0.211 0.2107 0.2344 0.9553 

ResuspensionA 0.26578 0.15096 0.26578 0.68302 -0.29238 1 0.22897 0.19618 -0.13589 

 0.2574 0.5252 0.2574 0.0009 0.211  0.3315 0.4071 0.5678 

Concentration 0.87667 0.76395 0.87667 0.26153 0.29253 0.22897 1 0.98203 -0.01963 

 0.0001 0.0001 0.0001 0.2654 0.2107 0.3315  0.0001 0.9345 

EColi 0.8927 0.74649 0.8927 0.24282 0.27852 0.19618 0.98203 1 -0.02001 

 0.0001 0.0002 0.0001 0.3023 0.2344 0.4071 0.0001  0.9333 

LISSTSizes -0.26839 -0.34361 -0.26839 -0.12107 -0.01341 -0.13589 -0.01963 -0.02001 1 

 0.2526 0.138 0.2526 0.6111 0.9553 0.5678 0.9345 0.9333  

          

BF Q Turbidity T Height2 Attachment Resuspension U ResuspensionA Concentration EColi LISSTSizes 

Q 1 -0.96203 -1 0.71967 -0.40969 -0.26664 0.12026 0.69966 0.32461 

  0.0001 0.0001 0.0003 0.0728 0.2558 0.6135 0.0006 0.1626 

TurbidityT -0.96203 1 0.96203 -0.73048 0.43318 0.20283 0.00087 -0.58244 -0.19317 

 0.0001  0.0001 0.0003 0.0564 0.3911 0.9971 0.007 0.4145 

Height2 -1 0.96203 1 -0.71967 0.40969 0.26664 -0.12026 -0.69966 -0.32461 

 0.0001 0.0001  0.0003 0.0728 0.2558 0.6135 0.0006 0.1626 

Attachment 0.71967 -0.73048 -0.71967 1 -0.51307 0.14628 -0.11575 0.42174 0.12779 

 0.0003 0.0003 0.0003  0.0207 0.5383 0.627 0.064 0.5913 

ResuspensionU -0.40969 0.43318 0.40969 -0.51307 1 -0.20219 0.04688 -0.22856 -0.05327 

 0.0728 0.0564 0.0728 0.0207  0.3926 0.8444 0.3324 0.8235 

ResuspensionA -0.26664 0.20283 0.26664 0.14628 -0.20219 1 -0.44109 -0.56726 -0.58734 

 0.2558 0.3911 0.2558 0.5383 0.3926  0.0516 0.0091 0.0065 

Concentration 0.12026 0.00087 -0.12026 -0.11575 0.04688 -0.44109 1 0.68858 0.84062 

 0.6135 0.9971 0.6135 0.627 0.8444 0.0516  0.0008 0.0001 
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EColi 0.69966 -0.58244 -0.69966 0.42174 -0.22856 -0.56726 0.68858 1 0.90281 

 0.0006 0.007 0.0006 0.064 0.3324 0.0091 0.0008  0.0001 

LISSTSizes 0.32461 -0.19317 -0.32461 0.12779 -0.05327 -0.58734 0.84062 0.90281 1 

 0.1626 0.4145 0.1626 0.5913 0.8235 0.0065 0.0001 0.0001  
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Appendix D Graphs & Bright Field Microscopy 

Water Temperature Tests and E. coli Growth in TSB 

A 

B 

A- Flume water Temperature test vs time for combination of two small pumps, 200 and 300 gpm. Used to 

determine maximum length of time before water temperature plateau 

B- E. coli in TSB measured over time to maximize growth time in water bath at 44.5Co. Minimum time 

was 10 hours and maximum time was 14 hours for the experiments 
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Bacterial Concentrations Over Flume Cross Sections  

 

 

 

 

 

  

A-Biofilm Concentration Diagram for location 1 at Q =1.26E-2 

B-Biofilm Concentration Diagram for location 2 at Q =1.26E-2 

C-Biofilm Concentration Diagram for location 2 at Q =1.42E-2 

D-Biofilm Concentration Diagram for location 2at Q =1.42E-2 

E-Biofilm Concentration Diagram for location 1 at Q =1.45E-2 

F-Biofilm Concentration Diagram for location 2 at Q = 1.45E-2 

A B 

C D 

E F 
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G-Biofilm Concentration Diagram for location 1 at Q =1.46E-2 

H-Biofilm Concentration Diagram for location 2 at Q =1.46E-2 

I-Biofilm Concentration Diagram for location 1 at Q = 1.61E-2 

J-Biofilm Concentration Diagram for location 2 at Q = 1.61E-2 

 

G H 

I J 
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A-Sand Concentration Diagram for location 1 at Q =1.04E-2 

B-Sand Concentration Diagram for location 2 at Q =1.04E-2 

C-Sand Concentration Diagram for location 1 at Q =4.45E-3 

D-Sand Concentration Diagram for location 2 at Q =4.45E-3 

E-Sand Concentration Diagram for location 1 at Q =4.56E-3 

F-Sand Concentration Diagram for location 2at Q =4.56E-3 

 

A 

F 

D 

E 

C 

B 
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G-Sand Concentration Diagram for location 1 at Q =5.09E-3 

H-Sand Concentration Diagram for location 2 at Q =5.09E-3 

 

G H 
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A-Sand-Silt Concentration Diagram for location 1 at Q =1.56E-3 

B- Sand-Silt Concentration Diagram for location 2 at Q =1.56E-3 

C- Sand-Silt Concentration Diagram for location 1at Q =2.45E-3 

D-Sand-Silt Concentration Diagram for location 2 for at Q =2.45E-3 

E- Sand-Silt Concentration Diagram for location 1 at Q =3.14E-3 

F- Sand-Silt Concentration Diagram for location 2 at Q =3.14E-3 
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G-Sand-Silt Concentration Diagram for location 1 at Q =5.44E-3 

H- Sand-Silt Concentration Diagram for location 2at Q =5.44E-3 

G H 
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Resuspension Overall and Total Resuspension Comparison to Time 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

A-Resuspension overall graph, for all the different sediments separated by a line 

B-Total resuspension in comparison to time for location 1 

C- Total resuspension in comparison to time for location 2 
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Turbidity Comparison to Attached E. coli Concentrations  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A-Turbidity and attached E. coli concentrations for 

Biofilm, no trend shown 

 

B- Turbidity and attached E. coli concentrations for 

Sand-Silt, no trend shown 

 

C- Turbidity and attached E. coli concentrations for 

Sand, no trend shown 
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A 

D 

C 

B 

A-Resuspension comparison of physical average 

with the calibrated model with only Eou and b. The 

graph is only for the unattached fractions of 

resuspension.  

 

B-Resuspension comparison of physical average 

with the calibrated model with only Eou and b. The 

graph is only for the attached fractions of 

resuspension. 

 

C-Resuspension comparison of physical with the 

calibrated model with Eou, b and bottom sediments 

calibrated n parameters. The graph is only for the 

unattached fractions of resuspension. 

 

D- Resuspension comparison of physical with the 

calibrated model with Eou, b and bottom sediments 

calibrated n parameters. The graph is only for the 

attached fractions of resuspension. 

 

 

Model and Calculated Resuspension Comparisons 
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B 

A- Resuspension comparison of physical with the 

calibrated model with Eou, b and bottom sediments 

calibrated n parameters averaged for all bottom 

sedimentss and depths. The graph is only for the 

unattached fractions of resuspension. 

 

B- Resuspension comparison of physical with the 

calibrated model with Eou, b and bottom sediments 

calibrated n parameters averaged for all bottom 

sedimentss and depths. The graph is only for the 

attached fractions of resuspension. 

C- Resuspension comparison of physical with the 

calibrated model with Eou, b and bottom sediments 

calibrated n average parameters all bottom 

sedimentss and depth. The graph is only for the 

unattached fractions of resuspension. 

 

D- Resuspension comparison of physical with the 

calibrated model with Eou, b and bottom sediments 

calibrated n average parameters for all bottom 

sedimentss and depth. The graph is only for the 

attached fractions of resuspension. 
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A B 

C D 

E F 

A- Blue green Algae 

B- Blue Green Algae Diatom in water 

D- Blue green Algae 

E- Attached Rotifers 

F- Blue Green Algae 

Bright Field Microscopy Images 
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G H 

I J 

K L 

G- Rotifer in biofilm 

H- Rotifer in biofilm 

I-Rotiver in biofilm 

J- Rotifer attached to sediment 

K- Diatom 

L-Rotifer in water 
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